The liver responds to injury with regulated tissue regeneration. During early regeneration, the liver accumulates fat. Neither the mechanisms responsible for nor the functional significance of this transient steatosis have been determined. In this study, we examined patterns of gene expression associated with hepatic fat accumulation in regenerating liver and tested the hypothesis that disruption of hepatic fat accumulation would be associated with impaired hepatic regeneration. First, microarray-based gene expression analysis revealed that several genes typically induced during adipocyte differentiation were specifically upregulated in the regenerating liver prior to peak hepatocellular fat accumulation. These observations suggest that hepatic fat accumulation is specifically regulated during liver regeneration. Next, 2 methods were employed to disrupt hepatocellular fat accumulation in the regenerating liver. Because exogenous leptin supplementation reverses hepatic steatosis in leptin-deficient mice, the effects of leptin supplementation on liver regeneration in wildtype mice were examined. The data showed that leptin supplementation resulted in suppression of hepatocellular fat accumulation and impairment of hepatocellular proliferation during liver regeneration. Second, because glucocorticoids regulate cellular fat accumulation during adipocyte differentiation, the effects of hepatocyte-specific disruption of the glucocorticoid receptor were similarly evaluated. The results showed that hepatic fat accumulation and hepatocellular proliferation were also suppressed in mice with liver specific disruption of glucocorticoid receptor. In conclusion, suppression of hepatocellular fat accumulation is associated with impaired hepatocellular proliferation following partial hepatectomy, indicating that hepatocellular fat accumulation is specifically regulated during and may be essential for normal liver regeneration. (HEPATOLOGY 2004;40:1322-1332 T he liver regenerates in response to a variety of injuries. [1][2][3] The rodent partial hepatectomy model has been a useful tool with which to investigate the signals that regulate this regenerative response. Following partial hepatectomy, most of the remaining quiescent hepatocytes in the remnant liver tissue quickly proliferate leading to rapid restoration of appropriate liver mass. 4 Analyses of genetically and pharmacologically manipulated mice using this model have begun to identify the coordinated signaling events that regulate hepatic regeneration. These signals include activation of tumor necrosis factor ␣ (TNF␣) interleukin (IL)-6 signaling, 5-7 generation of mitochondrial reactive oxygen species 8 and prostaglandins 9 , and activation of stress-and mitogenactivated-protein kinase cascades. 10 These signals lead to activation of nuclear factor B (NF B) and other transcription factors, which direct an immediate early gene expression program culminating in growth factor-dependent hepatocellular reentry into and progression through the cell cycle [11][12][13] . Once t...
Mesenchymal stem cells (MSCs) are adult multipotent cells found in bone marrow, adipose tissue, and other adult tissues. MSCs improve regeneration of injured tissues in vivo, but the mechanisms remain unclear. Typically, MSCs are cultured under ambient or normoxic conditions (21% O2 ). However, the physiological niches of MSCs have much lower oxygen tension. When used as a therapeutic tool to repair tissue injuries, MSCs cultured in standard conditions must adapt from 21% O2 in culture to <1% O2 in ischemic tissue. We have examined the effects of hypoxia preconditioning (1% O2 ) in human adipose derived mesenchymal stem cells (AD-MSCs) to discover the conditions that best enhance their tissue regenerative potential. We demonstrate that AD-MSCs respond positively to hypoxia compared with normoxia preconditioning, show decreased apoptosis even in severe microenvironmental conditions (such as a low-serum medium), and an increased expression of the angiogenic factors, vascular endothelial growth factor and basic fibroblast growth factor. Human umbilical vein endothelial cells have higher vitality and lower apoptosis when cultured in medium taken from hypoxia-preconditioned AD-MSCs, as well as significantly increased capillary-like structures with this medium on Matrigel. The data suggest that hypoxia preconditioned AD-MSCs can improve tissue regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.