To improve the engineering performance of high-liquid-limit soil, lignin, a by-product of the papermaking industry, was used. First, the influence of lignin content and curing age on the physicochemical and mechanical properties of the improved soil was determined by carrying out pH, Atterberg limits, heavy compaction, unconfined compressive strength (UCS), California bearing ratio (CBR), and resilience modulus tests. Secondly, microscopic images obtained by scanning electron microscopy (SEM) were analyzed. The characteristic and evolution rules of the microstructure were expounded for the improved soil. Finally, combining SEM with energy-dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) analysis, the mechanism of lignin improvement on high-liquid-limit clay is discussed from the perspective of molecular structure. The results showed that the pH value of lignin-improved soil was much lower than that of quicklime-improved soil, which were 7.0 and 11.7, respectively. When the lignin content was 3%, the dry density and mechanical indexes (UCS, CBR, and resilience modulus) of the improved soil all showed the maximum values. From the perspective of microstructure, the connection between soil particles was strengthened through the wrapping and filling of the flocculent cementing materials produced by lignin. The improvement mechanism of lignin on soil was the combined result of ion exchange, hydrogen bonding, covalent bonding, and electrostatic attraction.
To explore the damage evolution law of cement-stabilized weathered sand under the action of freeze–thaw cycles, relevant experimental research was carried out on stabilized weathered sand with a cement content of 3%, including unconfined compressive strength (UCS), scanning electron microscope (SEM), and mercury intrusion porosimetry (MIP) testing. Using the surface appearance, mass, and UCS of the specimen, combined with the changes of microscopic characteristics, the freeze–thaw damage law and microscopic degradation mechanism of cement-stabilized weathered sand were analyzed. The test results showed that with the increase of the number of freeze–thaw cycles, the surface appearance of the specimen continued to deteriorate, the unconfined compressive strength gradually decreased, and the mass of the specimen first increased and then decreased. After nine freeze–thaw cycles, the specimen was seriously damaged, and the strength loss was as high as 55%. From a microscopic point of view, the freeze–thaw cycles caused the pore water inside the specimen to continuously change between ice crystals and liquid. Frost heave and shrinkage weakened the cement bond between the weathered sand particles and made the pores in the specimen develop and expand continuously. With the decrease of the number of micropores and the increase of the number of medium and large pores, the particle skeleton changed from a dense structure to a porous structure, which eventually led to the deterioration of the macroscopic properties of the cement-stabilized weathered sand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.