The low–temperature poly–Si oxide (LTPO) backplane is realized by monolithically integrating low–temperature poly–Si (LTPS) and amorphous oxide semiconductor (AOS) thin–film transistors (TFTs) in the same display backplane. The LTPO–enabled dynamic refreshing rate can significantly reduce the display’s power consumption. However, the essential hydrogenation of LTPS would seriously deteriorate AOS TFTs by increasing the population of channel defects and carriers. Hydrogen (H) diffusion barriers were comparatively investigated to reduce the H content in amorphous indium–gallium–zinc oxide (a–IGZO). Moreover, the intrinsic H–resistance of a–IGZO was impressively enhanced by plasma treatments, such as fluorine and nitrous oxide. Enabled by the suppressed H conflict, a novel AOS/LTPS integration structure was tested by directly stacking the H–resistant a–IGZO on poly–Si TFT, dubbed metal–oxide–on–Si (MOOS). The noticeably shrunken layout footprint could support much higher resolution and pixel density for next–generation displays, especially AR and VR displays. Compared to the conventional LTPO circuits, the more compact MOOS circuits exhibited similar characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.