Terpene synthases (TPS) is a key enzyme in the synthesis of plant terpenoids. Studies on TPSs have not been reported in Gossypium barbadense and Gossypium arboreum. 260 TPSs were identified in Gossypium, including 71 in Gossypium hirsutum, 75 in Gossypium. barbadense, 60 in Gossypium. arboreum, and 54 in Gossypium raimondii. We systematically analyzed the TPS gene family of Gossypium from three aspects: gene structure, evolutionary process and gene function. (1) Gene structure: Based on the protein structure of two conserved domains (PF01397 and PF03936), the TPS gene family is divided into five clades: TPS -a, -b, -c, -e/f and -g. (2) Evolution: Whole genome duplication and segmental duplication are the main modes of TPS gene amplification. (3) Function: The abundance of cis-acting elements may reveal the functional diversity of TPSs in cotton. TPS gene has tissue specific expression in cotton. The hypomethylation of the exon of TPSs may help to enhance the adaptability of cotton to flooding stress. In conclusion, this study can broaden the understanding of structure-evolution-function of the TPS gene family, and provide reference for the mining and verification of new genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.