Saline stress is a major factor that limits crop yield. Nitric oxide (NO) is functional during plant growth, development, and defense responses. In the present study, the protective role of NO in alleviating saline stress in maize at the physiological and proteomic levels was examined. Our results showed that salt treatment quickly induced NO accumulation and addition of the NO donor S-nitroso-N-acetylpenicillamine (SNAP) efficiently eliminated the inhibitory effect of salt on shoot growth and photosynthesis and inhibited salt-inducible H2O2 accumulation. These effects could be reversed by NO metabolic scavengers and inhibitors. Further proteomic and Western blotting analysis revealed that NO induced G-protein-associated protein accumulation and antioxidant enzymes activities, in addition to activation of defense proteins, energy metabolism, and cell structure/division in salt-treated maize seedlings. Controlling the G-protein status with G-protein activators or inhibitors also affected NO generation and root and stem growth in maize seedlings after saline stress. On the basis of these results, we propose that NO enhances salt tolerance in maize seedlings by enhancing antioxidant enzyme activities and controlling H2O2 levels, and these effects are accompanied by diverse downstream defense responses. During this process, G-protein signaling is an early event that works upstream of NO biogenesis.
SummaryThe overexpression of miR319 in plants results in delayed senescence, and high levels of miR319‐targeted TCP4 transcription factor cause premature onset of this process. However, the underlying mechanisms of this pathway remain elusive. Here, we found that miR319 overexpression results in a decrease in TCP4 abundance and secondary cell wall formation in the stem. Conversely, constitutive expression of miR319‐resistant TCP4 promotes secondary cell wall formation, indicating that miR319‐mediated TCP4 controls secondary cell wall formation during development. Further analysis revealed that TCP4 might directly bind the promoter of VND7 to activate its expression, which triggers the expression of a VND7 transcriptional network associated with secondary cell wall biosynthesis and programmed cell death and accelerates vessel formation. In addition, the development process gradually increased TCP4 expression. These results suggest that miR319 and its target TCP4 can act as switches that turn on secondary cell wall synthesis and programmed cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.