FGF1 is an autocrine/paracrine regulator whose binding to heparan sulfate proteoglycans effectively precludes its circulation 1,2. Though known as a mitogenic factor, FGF1 knockout mice develop insulin resistance when stressed by a high fat diet, suggesting a potential role in nutrient homeostasis 3,4. Here we show that parenteral delivery of a single dose of recombinant FGF1 (rFGF1) results in potent, insulin-dependent glucose lowering in diabetic mice that is dose-dependent, but does not lead to hypoglycemia. Chronic pharmacological rFGF1 treatment increases insulin-dependent glucose uptake in skeletal muscle and suppresses hepatic glucose production to achieve whole-body insulin sensitization. The sustained glucose lowering and insulin sensitization attributed to rFGF1 are not accompanied by the side effects of weight gain, liver steatosis and bone loss associated with current insulin sensitizing therapies. Furthermore, we demonstrate that the glucose lowering activity of FGF1 can be dissociated from its mitogenic activity and is mediated predominantly via FGF receptor 1 (FGFR1) signaling. In summary, we have uncovered an unexpected, neomorphic insulin sensitizing action for exogenous non-mitogenic human FGF1 with therapeutic potential for treatment of insulin resistance and type 2 diabetes.
Although adipose tissue is an expandable and readily attainable source of proliferating, multipotent stem cells, its potential for use in regenerative medicine has not been extensively explored. Here we report that adult human and mouse adipose-derived stem cells can be reprogrammed to induced pluripotent stem (iPS) cells with substantially higher efficiencies than those reported for human and mouse fibroblasts. Unexpectedly, both human and mouse iPS cells can be obtained in feeder-free conditions. We discovered that adipose-derived stem cells intrinsically express high levels of pluripotency factors such as basic FGF, TGFβ, fibronectin, and vitronectin and can serve as feeders for both autologous and heterologous pluripotent cells. These results demonstrate a great potential for adipose-derived cells in regenerative therapeutics and as a model for studying the molecular mechanisms of feeder-free iPS generation and maintenance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.