Outlining, or segmenting, the prostate is a very important task in the assignment of appropriate therapy and dose for cancer treatment; however, manual outlining is tedious and time-consuming. In this paper, an algorithm is described for semiautomatic segmentation of the prostate from 2D ultrasound images. The algorithm uses model-based initialization and the efficient discrete dynamic contour. Initialization requires the user to select only four points from which the outline of the prostate is estimated using cubic interpolation functions and shape information. The estimated contour is then deformed automatically to better fit the image. The algorithm can easily segment a wide range of prostate images, and contour editing tools are included to handle more difficult cases. The performance of the algorithm with a single user was compared to manual outlining by a single expert observer. The average distance between semiautomatically and manually outlined boundaries was found to be less than 5 pixels (0.63 mm), and the accuracy and sensitivity to area measurements were both over 90%.
In this paper, we report on two methods for semiautomatic three-dimensional (3-D) prostate boundary segmentation using 2-D ultrasound images. For each method, a 3-D ultrasound prostate image was sliced into the series of contiguous 2-D images, either in a parallel manner, with a uniform slice spacing of 1 mm, or in a rotational manner, about an axis approximately through the center of the prostate, with a uniform angular spacing of 5 degrees. The segmentation process was initiated by manually placing four points on the boundary of a selected slice, from which an initial prostate boundary was determined. This initial boundary was refined using the Discrete Dynamic Contour until it fit the actual prostate boundary. The remaining slices were then segmented by iteratively propagating this result to an adjacent slice and repeating the refinement, pausing the process when necessary to manually edit the boundary. The two methods were tested with six 3-D prostate images. The results showed that the parallel and rotational methods had mean editing rates of 20% and 14%, and mean (mean absolute) volume errors of -5.4% (6.5%) and -1.7% (3.1%), respectively. Based on these results, as well as the relative difficulty in editing, we conclude that the rotational segmentation method is superior.
Phosphorous doped carbon dots (P-CDs), prepared by a one-step hydrothermal method, show the phenomenon of aggregation induced red shift emission (AIRSE).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.