This study introduces a data-driven model for online fault pre-warning in thermal power plant using incremental Gaussian mixture regression. To tackle the issue of outdated parameters in existing fault pre-warning models, this study puts forth an incremental Gaussian mixture regression that leverages the merging of Gaussian components to reconstruct the model and enable online modeling. Due to its criticality, a forgetting factor is introduced during the merging process to efficiently manage the weight allocation between present and historical patterns, thereby guaranteeing the model’s accuracy. The results of the sine function case demonstrate that the IGMR model exhibits excellent pattern control performance and modeling efficiency. Furthermore, the IGMR model is employed to forecast parameter alterations in pulverizer blockages with mode switching, and experimental validation indicates that IGMR precisely anticipates parameter changes following mode switching. Compared to on-site solutions, the pre-warning of coal blockage has a clear advantage in advance warning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.