Background There is insufficient evidence for the ability of vitamin K2 to improve type 2 diabetes mellitus symptoms by regulating gut microbial composition. Herein, we aimed to demonstrate the key role of the gut microbiota in the improvement of impaired glycemic homeostasis and insulin sensitivity by vitamin K2 intervention. Methods We first performed a 6-month RCT on 60 T2DM participants with or without MK-7 (a natural form of vitamin K2) intervention. In addition, we conducted a transplantation of the MK-7-regulated microbiota in diet-induced obesity mice for 4 weeks. 16S rRNA sequencing, fecal metabolomics, and transcriptomics in both study phases were used to clarify the potential mechanism. Results After MK-7 intervention, we observed notable 13.4%, 28.3%, and 7.4% reductions in fasting serum glucose (P = 0.048), insulin (P = 0.005), and HbA1c levels (P = 0.019) in type 2 diabetes participants and significant glucose tolerance improvement in diet-induced obesity mice (P = 0.005). Moreover, increased concentrations of secondary bile acids (lithocholic and taurodeoxycholic acid) and short-chain fatty acids (acetic acid, butyric acid, and valeric acid) were found in human and mouse feces accompanied by an increased abundance of the genera that are responsible for the biosynthesis of these metabolites. Finally, we found that 4 weeks of fecal microbiota transplantation significantly improved glucose tolerance in diet-induced obesity mice by activating colon bile acid receptors, improving host immune-inflammatory responses, and increasing circulating GLP-1 concentrations. Conclusions Our gut-derived findings provide evidence for a regulatory role of vitamin K2 on glycemic homeostasis, which may further facilitate the clinical implementation of vitamin K2 intervention for diabetes management. Trial registration The study was registered at https://www.chictr.org.cn (ChiCTR1800019663).
Background Associations of dietary or supplementary intake of several unsaturated fatty acids and mortality have been widely studied but the results were still hitherto inconsistent or limited. It is still need to explore the effects of these fatty acids by using the objective biomarkers. Objective We aimed to investigate the relevancy of several serum n-3 and n-6 fatty acids with all-cause and disease-specific mortality to confirm their health effects and effects on the associations between dietary quality and all-cause mortality. Methods A total of 4132 people from NHANES 2003–2004 and 2011–2012 and the mortality information was confirmed from the NDI. CPH models adjusted for known risk factors were conducted to explore the associations between circulating n-3 and n-6 fatty acids and all-cause or CVD or cancer mortality under complex sampling. We further evaluated their effects on association between dietary quality and all-cause mortality. Results A total of 437 deaths occurred during the mean follow-up of 83.34 months, including 157 CVD death and 100 cancer death. Serum LA, ALA, EPA and DHA were associated with all-cause mortality (HR in quintile5: LA:0.584, 95%CI: 0.387–0.882, P trend = 0.011; ALA:0.626, 95%CI: 0.432–0.907, P trend = 0.008; EPA:0.535, 95%CI: 0.375–0.764, P trend = 0.001; DHA:0.669, 95%CI: 0.468–0.955, P trend = 0.031). Additionally, serum EPA and ALA were respectively related to CVD and cancer mortality (Q5 HR: EPA:0.450, 95%CI: 0.23–0.854, P trend = 0.009; ALA:0.387, 95%CI: 0.167–0.900, P trend = 0.022). Serum AA, GLA, DGLA and SDA were not associated with any risk of mortality. The effect on all-cause mortality of the lower AHEI scores can be improved by adherence to a higher serum LA, EPA and DHA (in the lowest AHEI strata, LA in tertile3 compared to tertile1 HR:0.596, 95%CI: 0.366–0.970; EPA:0.660, 95%CI: 0.454–0.959; DHA:0.666, 95%CI; 0.444–1.000). Conclusions Our results support the recent dietary recommendations to increase the intake of plant-derived and marine-derived n-6 and n-3 to improve the ability of primary and secondary prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.