In indoor positioning problems, GPS technology used in outdoor positioning needs to be improved due to the characteristic features of wireless signals. There currently needs to be a generally accepted standard method for indoor positioning. In this study, an ecosystem consisting of Beacon devices, Bluetooth intelligent devices, and Wi-Fi access points has been created to propose an effective indoor location determination method by using Wi-Fi and BLE technologies in a hybrid way. First, RSSI (Received Signal Strength Indicator) data were collected using the fingerprint method. Then, Kalman Filter and Savitzky Golay Filter are used in a hybrid manner to reduce the noise on the obtained signal data and make it more stable. In the first part, using the collected data from Wi-Fi and Beacon devices, the Non-linear least squares method (NLLS), including Levenberg-Marquardt (LM), is used for indoor tracking. In the second part, a fingerprinting-based approach is tested. K Nearest Neighbor (KNN) and Support Vector Machine (SVM) algorithms estimate the area where the client is located. Each algorithm’s accuracy rate are calculated on different training and test data and presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.