Objective: A male factor is responsible in approximately 30-40% of couples receiving infertility treatment. Routinely, such couples undergo semen analysis including parameters such as sperm count, motility and morphology. Generally, the analysis of sperm DNA damage, shown to have a significant clinical importance by many studies, is recognized as an advanced test that is not included in routine infertility tests. Intracytoplasmic sperm injection method, commonly employed in the current infertility treatment protocols, lowers the fertilization rate, however, fertilization can occur even with a damaged DNA which is known to pose a risk in the subsequent pregnancy period. The relation between sperm morphology and the degree of sperm DNA damage has not yet been understood clearly. In this study, we aimed to investigate the association between routine semen analysis and sperm DNA integrity assay, another advanced but costly method. Material and methods:The degree of DNA damage was compared with the results of semen analysis, based on the WHO criteria, in 399 male patients who received comet assay for sperm DNA integrity. The statistical correlation analyses were performed with Windows SPPS statistical package program.Results: Accordingly, the sperm DNA damage was found to be correlated with all 3 parameters (sperm count, forward motility, and morphology) examined by the semen analysis (p<0.001). Total sperm DNA Damage Count was 226, 216, and 210 arbitrary units in patients with a sperm count <15 mil/mL, forward moving motility <32%, and normal morphology <4%, respectively. The difference with the normal individuals was statistically significant (p<0.001). Conclusion:In light of the comet assay results, higher degree of sperm DNA damage is associated with significant impairment of all seminal parameters.
Silver has long been valued as a precious metal, and it is used to make ornaments, jewelry, high-value tableware, utensils, and currency coins. Human exposures to silver and silver compounds can occur oral, dermal, or by inhalation. In this study, we investigated genotoxic and oxidative effects of silver exposure among silver jewelry workers. DNA damage in peripheral mononuclear leukocytes was measured by using the comet assay. Serum total antioxidative status (TAS), total oxidative status (TOS), total thiol contents, and ceruloplasmin levels were measured by using colorimetric methods among silver jewelry workers. Moreover, oxidative stress index (OSI) was calculated. Results were compared with non-exposed healthy subjects. The mean values of mononuclear leukocyte DNA damage were significantly higher than control subjects (p < 0.001). Serum TOS, OSI, and ceruloplasmin levels were also found to be higher in silver particles exposed group than those of non-exposed group (p < 0.001, p < 0.001, p < 0.01, respectively). However, serum TAS levels and total thiol contents of silver exposed group were found significantly lower (p < 0.05, p < 0.001, respectively). Exposure to silver particles among silver jewelry workers caused oxidative stress and accumulation of severe DNA damage.
Chondrosarcoma is one of the most common bone tumors, and at present, there is no non-invasive treatment option for this cancer. The chondrosarcoma OUMS-27 cell line produces proteoglycan and type II, IX, and XI collagens, which constitutes cartilage tissue. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) proteases are a group of secreted proteases, which include the procollagen N-proteinases ADAMTS-2, -3 and -14. These procollagen N-proteinases perform a role in the processing of procollagens to collagen and the maturation of type I collagen. The present study aimed to improve the understanding of the causes of metastasis, local invasion and resistance to chemo- and radiotherapy in chondrosarcoma, as well as the effect of insulin on cancer cells. The present study was designed to reveal the effects of insulin on procollagen N-proteinases in chondrosarcoma OUMS-27 cells. The cells were cultured in Dulbecco's modified Eagle's medium (DMEM) alone or in DMEM containing 10 µg/ml insulin. The medium was changed every other day for 11 days. The cells were harvested on days 1, 3, 7 and 11, and total RNA isolation was performed immediately following harvesting. The expression levels of ADAMTS2, ADAMTS3 and ADAMTS14 mRNA were estimated by reverse transcription-quantitative polymerase chain reaction using appropriate primers. ADAMTS2 mRNA expression was found to be decreased on day 7 (P=0.028) and increased at day 11 compared with the control group (P=0.016). The increase in mRNA concentration at day 11 was significantly different compared to the concentrations on days 3 (P=0.047) and 7 (P=0.008). The expression of ADAMTS3 mRNA decreased immediately subsequent to insulin induction on day 1 compared with the control group (P=0.008). The most evident decrease in mRNA concentration was seen at day 7 subsequent to insulin induction (P=0.008). The present results demonstrated that ADAMTS2 and ADAMTS3 may perform a role in the invasion and metastasis of tumors, and may also possess proteolytic activity that results in the breakdown of the extracellular matrix (ECM). Insulin itself can modulate the biosynthesis of ECM macromolecules that are altered in diabetes through various pathways.
ADAM: A Disintegrin and Metalloproteinase; ADAMTS1 and ADAMTS5: A Disintegrin and Metalloproteinase with 10 Thrombospondin Motifs 1 and 5; ADAMTS: A Disintegrin and Metalloproteinase with Thrombospondin; ABP: androgen binding protein; CAMs: cell adhesion molecules; ECM: extracellular matrix; FSH: follicle stimulating hormone; FSHR: FSH receptors; HRP: horseradish peroxidase; MMP: matrix metalloproteinases; MP: metalloproteinases; NOA: nonobstructive azoospermia; OA: obstructive azoospermia; TIMP-1: tissue inhibitor of metalloproteinase-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.