Sixty-two single-copy sorghum DNA clones were used to compare restriction fragment patterns of 53 sorghum accessions from Africa, Asia and the United States. Included were accessions from five morphological races of the cultivated subspecies bicolor, and four races of the wild subspecies verticilliflorum. From two to twelve alleles were detected with each probe. There was greater nuclear diversity in the wild subspecies (255 alleles in ten accessions) than in the domestic accessions (236 alleles in 37 accessions). Overall, 204 of the 340 alleles (60%) that were detected occurred in both subspecies. Phylogenetic analysis using parsimony separated the subspecies into separate clusters, with one group of intermediate accessions. Though exceptions were common, especially for the race bicolor, accessions classified as the same morphological race tended to group together on the basis of RFLP similarities. Selection for traits such as forage quality may have led to accessions genetically more similar to other races being classified as bicolors, which have a loose, small-grained panicle similar to wild races. Population statistics, calculated using four nuclear and four cytoplasmic probes that detect two alleles each, revealed a low but significant amount of heterozygosity, and showed little differentiation in alleles in the wild and cultivated subspecies. Outcrossing with foreign pollen appears to have been more important than migration via seed dispersal as a mechanism for gene flow between the wild and domestic accessions included in this study.
We have demonstrated that sorghum DNA sequences of mitochondrial origin can be used to distinguish different male-sterility-inducing cytoplasms. Six DNA clones containing single-copy mitochondrial sequences were hybridized on Southern blots to restriction enzyme-digested DNA of 28 sorghum lines representing sources of different cytoplasmic male-sterility (CMS) groups. Four cytoplasmic types were defined on the basis of the pattern of DNA fragments detected. Similar analyses of 50 additional diverse sorghum accessions suggested that three of the four cytoplasmic types may be diagnostic for CMS. Also, three other cytoplasmic types were discovered. These and other mitochondrial DNA clones may be useful molecular tools for "fingerprinting" sterility-inducing cytoplasms in breeding programs, determining cytoplasmic diversity among germ plasm accessions, and identifying new sources of cytoplasm that induce male sterility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.