Accurate temperature measurements can efficiently solve numerous critical problems and provide key information. Herein, a flexible micro-three-dimensional sensor, with a combination of platinum and indium oxide to form thermocouples, is designed and fabricated by a microfabrication process to achieve in situ real-time temperature measurements. The stability and reliability of the sensor are greatly improved by optimizing the process parameters, structural design, and preparation methods. A novel micro-three-dimensional structure with better malleability is designed, which also takes advantage of the fast response of a two-dimensional thin film. The as-obtained flexible temperature sensor with excellent stability and reliability is expected to greatly contribute to the development of essential components in various emerging research fields, including bio-robot and healthcare systems. The model of the application sensor in a mask is further proposed and designed to realize the collection of health information, reducing the number of deaths caused by the lack of timely detection and treatment of patients.
The integration of complex oxides with a wide spectrum of functionalities on Si, Ge and flexible substrates is highly demanded for functional devices in information technology. We demonstrate the remote epitaxy of BaTiO3 (BTO) on Ge using a graphene intermediate layer, which forms a prototype of highly heterogeneous epitaxial systems. The Ge surface orientation dictates the outcome of remote epitaxy. Single crystalline epitaxial BTO3-δ films were grown on graphene/Ge (011), whereas graphene/Ge (001) led to textured films. The graphene plays an important role in surface passivation. The remote epitaxial deposition of BTO3-δ follows the Volmer-Weber growth mode, with the strain being partially relaxed at the very beginning of the growth. Such BTO3-δ films can be easily exfoliated and transferred to arbitrary substrates like Si and flexible polyimide. The transferred BTO3-δ films possess enhanced flexoelectric properties with a gauge factor of as high as 1127. These results not only expand the understanding of heteroepitaxy, but also open a pathway for the applications of devices based on complex oxides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.