The formate pathway and NADH pathway as two common hydrogen-producing metabolic pathways have been well characterized to understand and improve biohydrogen production. These two pathways have been thought to be separate and have been independently investigated. However, in this study, perturbation of genes (hycA, fdhF, fhlA, ldhA, nuoB, hybO, fdh1, narP, and ppk) in Enterobacter aerogenes related to the formate pathway or NADH pathway revealed that these two pathways affected each other. Further metabolic analysis suggested that a linear relationship existed between the relative change of hydrogen yield in the formate pathway or NADH pathway and the relative change of NADH yield or ATP yield. Thus, this finding provides new insight into the role of cellular reducing power and energy level in the hydrogen metabolism. It also establishes a rationale for improving hydrogen production from a global perspective.
A novel expansin-like protein (CxEXL22) has been identified and characterized from newly isolated Arthrobotrys sp. CX1 that can cause cellulose decrystallization. Unlike previously reported expansin-like proteins from microbes, CxEXL22 has a parallel β-sheet domain at the N terminal, containing many hydrophobic residues to form the hydrophobic surface as part of the groove. The direct phylogenetic relationship implied the genetic transfers occurred from nematode to nematicidal fungal Arthrobotrys sp. CX1. CxEXL22 showed strong activity for the hydrolysis of hydrogen bonds between cellulose molecules, especially when highly crystalline cellulose was used as substrate. The hydrolysis efficiency of Avicel was increased 7.9-fold after pretreating with CxEXL22. The rupture characterization of crystalline region indicated that CxEXL22 strongly binds cellulose and breaks up hydrogen bonds in the crystalline regions of cellulose to split cellulose chains, causing significant depolymerization to expose much more microfibrils and enhances cellulose accessibility.
Glycans are an important group of natural biopolymers, which not only play the role of a major biological energy resource but also as signaling molecules. As a result, structural characterization or sequencing of glycans, as well as targeted synthesis of glycans, is of great interest for understanding their structure–function relationship. However, this generally involves tedious manual operations and high reagent consumptions, which are the main technical bottlenecks retarding the advances of both automatic glycan sequencing and synthesis. Until now, automated enzymatic glycan sequencers or synthesizers are still not available on the market. In this study, to promote the development of automation in glycan sequencing or synthesis, first, programmed degradation and synthesis of glycans catalyzed by enzymes were successfully conducted on a digital microfluidic (DMF) device by using microdroplets as microreactors. In order to develop automatic glycan synthesizers and sequencers, a strategy integrating enzymatic oligosaccharide degradation or synthesis and magnetic manipulation to realize the separation and purification process after enzymatic reactions was designed and performed on DMF. An automatic process for enzymatic degradation of tetra-N-acetyl chitotetraose was achieved. Furthermore, the two-step enzymatic synthesis of lacto-N-tetraose was successfully and efficiently completed on the DMF platform. This work demonstrated here would open the door to further develop automatic enzymatic glycan synthesizers or sequencers based on DMF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.