The cadmium (II) and copper (II) adsorption properties of chemically pretreated biomass of red marine alga Gracilaria fisheri were investigated. Batch equilibrium experiments showed that the maximum adsorption capacity values of the pretreated biomass for cadmium and copper were 0.63 and 0.72 mmol g(-1), respectively. The equilibrium data fitted well to the Langmuir isotherm model. The adsorption capacity increased as pH increased and reached a plateau at pH 4.0. The cadmium and copper uptake rates were rapid with 90% of the biosorption completed within 30 minutes. The presence of light metal ions (Na+, K+, Mg2+ and Ca2+) in solution had an insignificant effect on cadmium and copper sorption capacity. These findings indicate a positive potential for the biosorbent development with effective heavy metal removal capacity in the presence of light metal ions in waste streams by using the biomass of plentifully available red marine algae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.