Ectomycorrhizas (EMs) alleviate stress tolerance of host plants, but the underlying molecular mechanisms are unknown. To elucidate the basis of EM-induced physiological changes and their involvement in stress adaptation, we investigated metabolic and transcriptional profiles in EM and non-EM roots of gray poplar (Populus 3 canescens) in the presence and absence of osmotic stress imposed by excess salinity. Colonization with the ectomycorrhizal fungus Paxillus involutus increased root cell volumes, a response associated with carbohydrate accumulation. The stress-related hormones abscisic acid and salicylic acid were increased, whereas jasmonic acid and auxin were decreased in EM compared with non-EM roots. Auxin-responsive reporter plants showed that auxin decreased in the vascular system. The phytohormone changes in EMs are in contrast to those in arbuscular mycorrhizas, suggesting that EMs and arbuscular mycorrhizas recruit different signaling pathways to influence plant stress responses. Transcriptome analyses on a whole genome poplar microarray revealed activation of genes related to abiotic and biotic stress responses as well as of genes involved in vesicle trafficking and suppression of auxin-related pathways. Comparative transcriptome analysis indicated EM-related genes whose transcript abundances were independent of salt stress and a set of salt stress-related genes that were common to EM non-salt-stressed and non-EM salt-stressed plants. Salt-exposed EM roots showed stronger accumulation of myoinositol, abscisic acid, and salicylic acid and higher K + -to-Na + ratio than stressed non-EM roots. In conclusion, EMs activated stress-related genes and signaling pathways, apparently leading to priming of pathways conferring abiotic stress tolerance.Under natural conditions, many economically important tree species including fast-growing poplars (Populus spp.) form ectomycorrhizas (EMs) between roots and EM fungi. Colonization with EM fungi leads to profound changes in root architecture and morphology. Usually, EM roots are strongly ramnified and EM root tips show a bulb-like appearance (Smith and Read, 2008). In EMs, plants and fungi interact mutualistically: while the plant receives mineral nutrients and water through the fungus, the fungus is supplied with carbohydrates by its host (Smith and Read, 2008). To fulfill these functions, specific anatomical structures are established, which involve the formation of a hyphal mantle ensheathing the root tip with hyphae emanating into soil for nutrient uptake. Inside the mantle, hyphae grow between, but not inside, the cortex cells within the cell wall, forming an interface called the Hartig net for bidirectional nutrient exchange.The establishment of EMs requires a coordinated developmental program in both partners of the symbiosis. Transcriptional changes during initial stages of host recognition and colonization have been the focus of several recent studies (Johansson et al., 2004;Duplessis et al., 2005;Le Queré et al., 2005;Morel et
The isomers of monosaccharide always produce multiple chromatographic peaks as volatile derivatives during gas chromatography, which may result in the overlapping of different sugar peaks. Whereas reduction and oximation of sugar carbonyl groups for GC analysis do eliminate many isomer derivatives, the approaches create new problems. One ketose can yield two peaks by oximation, and different aldoses and ketoses can yield the same alditol upon reduction, leading to the inability to detect some important monosaccharides. This paper reports an optimal method that yields a single peak per sugar by acetylation directly. By using a methyl sulfoxide (Me2SO)/1-methylimidazole (1-MeIm) system, the carbohydrates in acetic anhydride (Ac2O) esterification reactions were solubilized, and the oxidation that normally occurs was inhibited. The results demonstrate that acetylated derivatives of 23 saccharides had unique peaks, which indicates aldose, ketose, and alditol can be determined simultaneously by GC-MS.
Soluble saccharides are very important metabolites of the life cycle and synthesis of structural polysaccharide components (cellulose, hemicellulose, pectin, etc.) of cell walls. A new method for droplet sampling of saps from tissues of organisms and manipulation routines in capillaries for extraction, derivation, and partitioning were developed for picogram-scale quantitative determination with gas chromatography-mass spectrometry (GC-MS). Five to ten microliters of sap was sampled with a glass capillary containing ribitol (internal standard). Subsequently, the analytes were acetylated with acetic anhydride and catalyzed by 1-methylimidazole. Finally, the soluble saccharides were qualitatively detected with GC-MS SIM (selective ion monitoring) mode. The linear ranges of the method were up to 1×10(-6) mol/L and the theoretically lowest limits of detection (LOD, s/n≥3) were up to 1×10(-9) mol/L. The method is suitable and applicable to analysis of soluble monosaccharides in fresh tissues and other aqueous samples in wide fields of agriculture, food science, biological sciences, and even medical studies.
Understanding the driver’s emotional needs for the dashboard is crucial to the success of vehicle design. In order to reduce the psychological burden of drivers in obtaining on-board information, the image of automobile dashboard was visually described and quantitatively analyzed with applying Kansei Engineering theory and the principle of Quantitative Class I. The predictive model between the adjectives of vehicle dashboard shape and perceptual image was established by using multiple linear regression analysis method, and the relationship between perceptual image and design elements was analyzed. The results show that the main sensory factors of shape design should be gentle and comfortable in the process of automobile dashboard design. To improve the fit between automobile dashboard design and driver’s perceptual needs by transforming driver’s emotional perception into design elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.