Carbon nanotube (CNT) field-effect transistor (FET)-based biosensors have shown great potential for ultrasensitive biomarker detection, but challenges remain, which include unsatisfactory sensitivity, difficulty in stable functionalization, incompatibility with scalable fabrication, and nonuniform performance. Here, we describe ultrasensitive, label-free, and stable FET biosensors built on polymer-sorted high-purity semiconducting CNT films with wafer-scale fabrication and high uniformity. With a floating gate (FG) structure using an ultrathin Y 2 O 3 high-κ dielectric layer, the CNT FET biosensors show amplified response and improved sensitivity compared with those sensors without Y 2 O 3 , which is attributed to the chemical gate-coupling effect dominating the sensor response. The CNT FG-FETs are modified to selectively detect specific disease biomarkers, namely, DNA sequences and microvesicles, with theoretical record detection limits as low as 60 aM and 6 particles/mL, respectively. Furthermore, the biosensors exhibit highly uniform performance over the 4 in. wafer as well as superior bias stress stability. The FG CNT FET biosensors could be extended as a universal biosensor platform for the ultrasensitive detection of multiple biological molecules and applied in highly integrated and multiplexed all CNT-FET-based sensor architectures.
Chondrocytes are the sole cellular constituents of normal cartilage. The degeneration and apoptosis of these cells are considered the main cause of osteoarthritis (OA). Previous studies have suggested that the enhancement of autophagy in chondrocytes can delay the progression of osteoarthritis by affecting intracellular metabolic activity, i.e., by regulating the metabolism of nutrients, which can delay cell aging and death. In this review, we explored the relationship between autophagy and chondrocyte metabolism and provided new ideas for the prevention and treatment of OA.
The development of colorectal cancer is a complex and multistep process mediated by a variety of factors including the dysregulation of genetic and epigenetic under the influence of microenvironment. It is evident that epigenetics that affects gene activity and expression has been recognized as a critical role in the carcinogenesis. Aside from DNA methylation, miRNA level, and genomic imprinting, histone modification is increasingly recognized as an essential mechanism underlying the occurrence and development of colorectal cancer. Aberrant regulation of histone modification like acetylation, methylation and phosphorylation levels on specific residues is implicated in a wide spectrum of cancers, including colorectal cancer. In addition, as this process is reversible and accompanied by a plethora of deregulated enzymes, inhibiting those histone-modifying enzymes activity and regulating its level has been thought of as a potential path for tumor therapy. This review provides insight into the basic information of histone modification and its application in the colorectal cancer treatment, thereby offering new potential targets for treatment of colorectal cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.