As a pair of differential isomers, Kaji-ichigoside F1 and Rosamultin are both pentacyclic triterpenoids isolated from the subterranean root of Potentilla anserina L., a plant used in folk medicine in western China as antihypoxia and anti-inflammatory treatments. We demonstrated that Kaji-ichigoside F1 and Rosamultin effectively prevented hypoxia-induced apoptosis in vascular endothelial cells. We established a hypoxia model, using EA.hy926 cells, to further explore the mechanisms. Hypoxia promoted the phosphorylation of AKT, ERK1/2, and NF-κB. In hypoxic cells treated with Kaji-ichigoside F1, p-ERK1/2 and p-NF-κB levels were increased, while the level of p-AKT was decreased. Treatment with Rosamultin promoted phosphorylation of ERK1/2, NF-κB, and AKT in hypoxic cells. Following the addition of LY294002, the levels of p-AKT, p-ERK1/2, and p-NF-κB decreased significantly. Addition of PD98059 resulted in reduced levels of p-ERK1/2 and p-NF-κB, while p-AKT levels were increased. Pharmacodynamic analysis demonstrated that both LY294002 and PD98059 significantly inhibited the positive effects of Kaji-ichigoside F1 on cell viability during hypoxia, consistent with the results of hematoxylin-eosin (H&E) staining, DAPI staining, and flow cytometry. The antihypoxia effects of Rosamultin were remarkably inhibited by LY294002 but promoted by PD98059. In Kaji-ichigoside F1- and Rosamultin-treated cells, Bcl2 expression was significantly upregulated, while expression of Bax and cytochrome C and levels of cleaved caspase-9 and cleaved caspase-3 were reduced. Corresponding to pharmacodynamic analysis, LY294002 inhibited the regulatory effects of Kaji-ichigoside F1 and Rosamultin on the above molecules, while PD98059 inhibited the regulatory effects of Kaji-ichigoside F1 but enhanced the regulatory effects of Rosamultin. In conclusion, Kaji-ichigoside F1 protected vascular endothelial cells against hypoxia-induced apoptosis by activating the ERK1/2 signaling pathway, which positively regulated the NF-κB signaling pathway and negatively regulated the PI3K/AKT signaling pathway. Rosamultin protected vascular endothelial cells against hypoxia-induced apoptosis by activating the PI3K/AKT signaling pathway and positively regulating ERK1/2 and NF-κB signaling pathways.
Background: Early diagnosis and effective intervention become the key points for delaying Alzheimer’s progression. Therefore, we aim to find new biomarkers for early diagnosis of Alzheimer (AD) by bioinformatics, and to reveal the possible mechanisms. Methods and results: GSE1297, GSE63063, and GSE110226 in the GEO database were used to screen out the differentially highly expressed genes. We found out a potential biomarker PTAFR differentially highly expressed in the brain tissue, peripheral blood and cerebrospinal fluid of AD patients. Furthermore, we found higher PTAFR level in the plasma and brain tissues of APP/PS1 mice. Simultaneously, it was uncovered that PTAFR mediated the inflammatory response to exaggerate microenvironment specially mediated by microglia through the IL10-STAT3 pathway. In addition, we also found PTAFR was a possible target for some anti-AD compounds such as EGCG, donepezil, curcumin, memantine, and Huperzine A.Conclusions: PTAFR was a potential biomarker for early AD diagnosis and treatment correlated with microglia-mediated microenvironment, and an important possible target to make novel strategy for clinical treatment and new drug discovery in AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.