Fracture detection and in‐situ stress determination via well logs are important for exploration and exploitation of subsurface hydrocarbons. Cores, thin sections, and image logs are used to describe and interpret the subsurface fractures and in‐situ stress in the Paleogene Dongying sandstones in Nanpu Sag, Bohai Bay Basin, China. The maximum horizontal stress (SHmax) indicates a nearly east‐west trend according to the borehole breakouts and drilling‐induced fractures. Natural fractures in the Dongying sandstones are classified into: (1) open fractures and (2) closed fractures. The cement‐filled (closed) fractures are commonly detected by image logs as bright discontinuous sinusoidal waves due to resistive filling materials, while the open fractures are evident on image logs appearing as dark sine waves. The open fractures are of dominantly high dip angles, and the rose diagrams confirm the presences of two sets of fractures: northwest‐southeast and northwest‐southeast orientation. Fractures with strikes approximately parallel to the SHmax have good connectedness, making a significant contribution in hydrocarbon production. In addition, the oil‐bearing layers are mainly associated with the intervals with open fractures. The presence of natural fractures provides important pore spaces and fluid flow conduits. Insights can be provided into the subsurface fracture (natural and induced) detection and characterization using image logs.
Abstract. The Lower Cretaceous Bashijiqike Formation of Kuqa depression is ultra-deeply buried sandstone in fold-and-thrust belts. Few researches link diagenetic processes with structure. To fill this gap, a comprehensive analysis integrating diagenesis with structure pattern, fracture and in situ stress is performed following a structural diagenetic approach. The results show that the pore spaces include residual intergranular pores, intergranular and intragranular dissolution pores, and micro-fractures. The sandstones experienced a high degree of mechanical compaction, and compaction is limited in well-sorted rocks or abundant in rigid quartz grains. The most volumetrically important diagenetic minerals are calcites. The framework grains experienced a varied degree of dissolution, and intergranular and intragranular dissolution pores are formed. Special aims are paid on the dissolution associated with the fracture planes. Most natural fractures are cemented by carbonate cements, which limit fluid flow. In addition, presences of fracture enhance dissolution, and the fracture planes are enlarged by dissolution. Cementation and dissolution can occur simultaneously in fracture surfaces, and the enlarged fracture surfaces can be cemented by late-stage cements. The in situ stress magnitudes are calculated using well logs. The horizontal stress difference (Δσ) determines the degree of mechanical compaction, and rocks associated with low Δσ experienced a low degree of compaction, and there contain preserved intergranular pores. Natural fractures are mainly related to the low Δσ layers. The presences of intergranular and intragranular dissolution pores are mainly associated with the fractured zones. The high quality reservoirs with intergranular pores or fractures are related to low Δσ layers. The structural diagenesis researches above help the prediction of reservoir quality in ultra-deep sandstones, and reduce the uncertainty in deep natural gas exploration in Kuqa depression.
Abstract. The Lower Cretaceous Bashijiqike Formation of the Kuqa Depression is made up of ultra-deeply buried sandstones in fold-and-thrust belts. Few researches have linked diagenetic processes with structure. To fill this gap, a comprehensive analysis integrating diagenesis with structure pattern, fracture and in situ stress is performed following a structural diagenetic approach. The results show that the pore spaces include residual intergranular pores, intergranular and intragranular dissolution pores, and micro-fractures. The sandstones experienced a high degree of mechanical compaction, but compaction is limited in well-sorted rocks or abundant in rigid quartz grains. The most volumetrically important diagenetic minerals are calcites. The framework grains experienced a varied degree of dissolution, and intergranular and intragranular dissolution pores are formed. Special attention is paid on the dissolution associated with the fracture planes. Large numbers of natural fractures are cemented by carbonate cements, which limit fluid flow. In addition, the presence of fracture enhances dissolution and the fracture planes are enlarged by dissolution. Cementation and dissolution can occur simultaneously in fracture surfaces, and the enlarged fracture surfaces can be cemented by late-stage cements. The in situ stress magnitudes are calculated using well logs. The horizontal stress difference (Δσ) determines the degree of mechanical compaction, and rocks associated with low Δσ experienced a low degree of compaction, and these contain preserved intergranular pores. Natural fractures are mainly related to the low Δσ layers. The presence of intergranular and intragranular dissolution pores is mainly associated with the fractured zones. The high-quality reservoirs with intergranular pores or fractures are related to low Δσ layers. The structural diagenesis researches above help the prediction of reservoir quality in ultra-deep sandstones and reduce the uncertainty in deep natural gas exploration in the Kuqa Depression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.