The worldwide outbreak of the new coronavirus disease (COVID-19) has been declared a pandemic by the World Health Organization (WHO). It has a devastating impact on daily life, public health, and global economy. Due to the highly infectiousness, it is urgent to early screening of suspected cases quickly and accurately. Chest X-ray medical image, as a diagnostic basis for COVID-19, arouses attention from medical engineering. However, due to small lesion difference and lack of training data, the accuracy of detection model is insufficient. In this work, a transfer learning strategy is introduced to hierarchical structure to enhance high-level features of deep convolutional neural networks. The proposed framework consisting of asymmetric pretrained DCNNs with attention networks integrates various information into a wider architecture to learn more discriminative and complementary features. Furthermore, a novel cross-entropy loss function with a penalty term weakens misclassification. Extensive experiments are implemented on the COVID-19 dataset. Compared with the state-of-the-arts, the effectiveness and high performance of the proposed method are demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.