The delay of ovarian aging and the fertility preservation of cancer patients are the eternal themes in the field of reproductive medicine. Acting as the pacemaker of female physiological aging, ovary is also considered as the principle player of cancer, cardiovascular diseases, cerebrovascular diseases, neurodegenerative diseases and etc. However, its aging mechanism and preventive measures are still unclear. Some researchers attempt to activate endogenous ovarian female germline stem cells (FGSCs) to restore ovarian function, as the most promising approach. FGSCs are stem cells in the adult ovaries that can be infinitely self-renewing and have the potential of committed differention. This review aims to elucidate FGSCs aging mechanism from multiple perspectives such as niches, immune disorder, chronic inflammation and oxidative stress. Therefore, the rebuilding nichs of FGSCs, regulation of immune dysfunction, anti-inflammation and oxidative stress remission are expected to restore or replenish FGSCs, ultimately to delay ovarian aging.
IntroductionPolycystic Ovary Syndrome (PCOS) is the most common reproductive endocrine disorder among women of reproductive age, which is one of the main causes of anovulatory infertility. Even though the rapidly developed assisted reproductive technology (ART) could effectively solve fertility problems, some PCOS patients still have not obtained satisfactory clinical outcomes. The poor quality of oocytes caused by the abnormal follicular development of PCOS may directly contribute to the failure of ART treatment. Ovarian granulosa cells (GCs) are the most closely related cells to oocytes, and changes in their functional status have a direct impact on oocyte formation. Previous studies have shown that changes in the ovarian microenvironment, like oxidative stress and inflammation, may cause PCOS-related aberrant follicular development by impairing the physiological state of the GCs. Therefore, optimizing the ovarian microenvironment is a feasible method for enhancing the development potential of PCOS oocytes.MethodsIn this study, we first detected the expression of inflammatory-related factors (TGF-β1, IL-10, TNFα, IL-6) and oxidative stress-related factors (HIF-1α and VEGFA), as well as the proliferation ability and apoptosis level of GCs, which were collected from control patients (non-PCOS) and PCOS patients, respectively. Subsequently, human ovarian granulosa cell line (KGN) cells were used to verify the anti-inflammatory and anti-oxidative stress effects of chitosan oligosaccharide (COS) on GCs, as well as to investigate the optimal culture time and concentration of COS. The optimal culture conditions were then used to culture GCs from PCOS patients and control patients.ResultsThe results showed that GCs from PCOS patients exhibited obvious inflammation and oxidative stress and significantly reduced proliferation and increased apoptosis. Furthermore, COS can increase the expression of anti-inflammatory factors (TGF-β1 and IL-10) and decrease the expression of pro-inflammatory factors (TNFα and IL-6), as well as promote the proliferation of GCs. Moreover, we found that COS can reduce the level of reactive oxygen species in GCs under oxidative stress by inhibiting the expression of HIF-1α and VEGFA and by suppressing the apoptosis of GCs induced by oxidative stress.ConclusionWe find that inflammation and oxidative stress exist in the GCs of PCOS patients, and COS can reduce these factors, thereby improving the function of GCs.
Background Chronic low-grade inflammation and ovarian germline stem cells (OGSCs) aging are important reasons for the decline of ovarian reserve function, resulting in ovarian aging and infertility. Regulation of chronic inflammation is expected to promote the proliferation and differentiation of OGSCs, which will become a key means for maintaining and remodeling ovarian function. Our previous study demonstrated that Chitosan Oligosaccharides (Cos) promoted the OGSCs proliferation and remodelled the ovarian function through improving the secretion of immune related factors,but the mechanism remains unclear, and the role of macrophages, the important source of various inflammatory mediators in the ovary needs to be further studied. In this study, we used the method of macrophages and OGSCs co-culture to observe the effect and mechanism of Cos on OGSCs, and explore what contribution macrophages give during this process. Our finding provides new drug treatment options and methods for the prevention and treatment of premature ovarian failure and infertility. Methods We used the method of macrophages and OGSCs co-culture to observe the effect and mechanism of Cos on OGSCs, and explore the important contribution of macrophages in it. The immunohistochemical staining was used to locate the OGSCs in the mouse ovary. Immunofluorescent staining, RT-qPCR and ALP staining were used to identify the OGSCs. CCK-8 and western blot were used to evaluate the OGSCs proliferation. β-galactosidase(SA-β-Gal) staining and western blot were used to detect the changing of cyclin-dependent kinase inhibitor 1A(P21), P53, Recombinant Sirtuin 1(SIRT1) and Recombinant Sirtuin 3(SIRT3). The levels of immune factors IL-2, IL-10, TNF-α and TGF-β were explored by using Western blot and ELISA. Results We found that Cos promoted OGSCs proliferation in a dose-and time-dependent manner, accompanied by IL-2, TNF-α increase and IL-10, TGF-β decrease. Mouse monocyte-macrophages Leukemia cells(RAW) can also produce the same effect as Cos. When combined with Cos, it can enhance the proliferative effect of Cos in OGSCs, and further increase IL-2, TNF-α and further decrease IL-10, TGF-β. The macrophages can enhance the proliferative effect of Cos in OGSCs is also associated with the further increase in IL-2, TNF-α and the further decrease in IL-10, TGF-β. In this study, we determined that the anti-aging genes SIRT-1 and SIRT-3 protein levels were increased by Cos and RAW respectively, whereas the senescence-associated SA-β-Gal and aging genes P21 and P53 were decreased. Cos and RAW had a protective effect on OGSCs delaying aging. Furthermore, RAW can further decrease the SA-β-Gal and aging genes P21 and P53 by Cos, and further increase SIRT1 and SIRT3 protein levels in OGSCs by Cos. Conclusion In conclusion, Cos and macrophages have synergistic effects on improving OGSCs function and delaying ovarian aging by regulating inflammatory factors.
As women age, their ovarian follicle pool naturally declines. However, female germline stem cells (FGSCs) possess a unique ability to differentiate into oocytes and continuously self-renew, providing an effective means of delaying ovarian aging by replenishing the primordial follicle pool. Therefore, activating FGSCs is critical in reshaping and safeguarding ovarian function. In this study, we investigated the biological activity of proanthocyanidins (PACs), natural antioxidants that exhibit anti-aging and anti-inflammatory properties beneficial for both male and female reproduction. Our in vivo and in vitro experiments demonstrate that PACs promote FGSCs proliferation while delaying ovarian aging. Specifically, PACs increase the number of primordial follicles, primary follicles, corpus luteum while reducing cystic follicles, and elevate estradiol(E2) levels along with anti-mullerian hormone(AMH) concentration levels in mice. Additionally, PACs significantly boost FGSC proliferation time- and dose-dependently by upregulating mRNA & protein expressions for FGSC-specific markers such as Mvh and Oct-4 while downregulating p53/p21 via activation of Sirt1 signaling pathway. The effects of PACS on FGCS were found to be impeded by the Sirt1 inhibitor EX527.Overall, this research provides strong evidence suggesting that PACS delay premature ovarian failure through regulating the Sirt1-p53-p21 signaling pathway involving female germline stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.