Deep neural networks (DNNs) are vulnerable to adversarial examples where inputs with imperceptible perturbations mislead DNNs to incorrect results. Recently, adversarial patch, with noise confined to a small and localized patch, emerged for its easy accessibility in real-world. However, existing attack strategies are still far from generating visually natural patches with strong attacking ability, since they often ignore the perceptual sensitivity of the attacked network to the adversarial patch, including both the correlations with the image context and the visual attention. To address this problem, this paper proposes a perceptual-sensitive generative adversarial network (PS-GAN) that can simultaneously enhance the visual fidelity and the attacking ability for the adversarial patch. To improve the visual fidelity, we treat the patch generation as a patch-to-patch translation via an adversarial process, feeding any types of seed patch and outputting the similar adversarial patch with high perceptual correlation with the attacked image. To further enhance the attacking ability, an attention mechanism coupled with adversarial generation is introduced to predict the critical attacking areas for placing the patches, which can help producing more realistic and aggressive patches. Extensive experiments under semi-whitebox and black-box settings on two large-scale datasets GTSRB and ImageNet demonstrate that the proposed PS-GAN outperforms state-of-the-art adversarial patch attack methods.
reasoning refers to the ability to analyze information, discover rules at an intangible level, and solve problems in innovative ways. Raven's Progressive Matrices (RPM) test is typically used to examine the capability of abstract reasoning. The subject is asked to identify the correct choice from the answer set to fill the missing panel at the bottom right of RPM (e.g., a 3×3 matrix), following the underlying rules inside the matrix. Recent studies, taking advantage of Convolutional Neural Networks (CNNs), have achieved encouraging progress to accomplish the RPM test. However, they partly ignore necessary inductive biases of RPM solver, such as order sensitivity within each row/column and incremental rule induction. To address this problem, in this paper we propose a Stratified Rule-Aware Network (SRAN) to generate the rule embeddings for two input sequences. Our SRAN learns multiple granularity rule embeddings at different levels, and incrementally integrates the stratified embedding flows through a gated fusion module. With the help of embeddings, a rule similarity metric is applied to guarantee that SRAN can not only be trained using a tuplet loss but also infer the best answer efficiently. We further point out the severe defects existing in the popular RAVEN dataset for RPM test, which prevent from the fair evaluation of the abstract reasoning ability. To fix the defects, we propose an answer set generation algorithm called Attribute Bisection Tree (ABT), forming an improved dataset named Impartial-RAVEN (I-RAVEN for short). Extensive experiments are conducted on both PGM and I-RAVEN datasets, showing that our SRAN outperforms the state-of-the-art models by a considerable margin.
reasoning refers to the ability to analyze information, discover rules at an intangible level, and solve problems in innovative ways. Raven's Progressive Matrices (RPM) test is typically used to examine the capability of abstract reasoning. In the test, the subject is asked to identify the correct choice from the answer set to fill the missing panel at the bottom right of RPM (e.g., a 3×3 matrix), following the underlying rules inside the matrix. Recent studies, taking advantage of Convolutional Neural Networks (CNNs), have achieved encouraging progress to accomplish the RPM test problems. Unfortunately, simply relying on the relation extraction at the matrix level, they fail to recognize the complex attribute patterns inside or across rows/columns of RPM. To address this problem, in this paper we propose a Hierarchical Rule Induction Network (HriNet), by intimating human induction strategies. HriNet extracts multiple granularity rule embeddings at different levels and integrates them through a gated embedding fusion module. We further introduce a rule similarity metric based on the embeddings, so that HriNet can not only be trained using a tuplet loss but also infer the best answer according to the similarity score. To comprehensively evaluate HriNet, we first fix the defects contained in the very recent RAVEN dataset and generate a new one named Balanced-RAVEN. Then extensive experiments are conducted on the large-scale dataset PGM and our Balanced-RAVEN, the results of which show that HriNet outperforms the state-of-the-art models by a large margin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.