The authors wish to note the following: ''We wish to add direct references to a stochastic model of DNA replication previously applied to the Xenopus laevis early embryonic divisions. That model was applied to molecular combing experiments on cellfree extracts from Xenopus laevis embryos.'' The additional references appear below. www.pnas.org/cgi
Oxygen consumption in marine sediments is often coupled to the oxidation of sulphide generated by degradation of organic matter in deeper, oxygen-free layers. Geochemical observations have shown that this coupling can be mediated by electric currents carried by unidentified electron transporters across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contained strings with distinct properties in accordance with a function as electron transporters. Living, electrical cables add a new dimension to the understanding of interactions in nature and may find use in technology development.
The gram-negative metal-reducing microorganism, previously known as strain GS-15, was further characterized. This strict anaerobe oxidizes several short-chain fatty acids, alcohols, and monoaromatic compounds with Fe(III) as the sole electron acceptor. Furthermore, acetate is also oxidized with the reduction of Mn(IV), U(VI), and nitrate. In whole cell suspensions, the c-type cytochrome(s) of this organism was oxidized by physiological electron acceptors and also by gold, silver, mercury, and chromate. Menaquinone was recovered in concentrations comparable to those previously found in gram-negative sulfate reducers. Profiles of the phospholipid ester-linked fatty acids indicated that both the anaerobic desaturase and the branched pathways for fatty acid biosynthesis were operative. The organism contained three lipopolysaccharide hydroxy fatty acids which have not been previously reported in microorganisms, but have been observed in anaerobic freshwater sediments. The 16S rRNA sequence indicated that this organism belongs in the delta proteobacteria. Its closest known relative is Desulfuromonas acetoxidans. The name Geobacter metallireducens is proposed.
Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic-abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report, to our knowledge, the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella oneidensis MR-1. Live fluorescence measurements, immunolabeling, and quantitative gene expression analysis point to S. oneidensis MR-1 nanowires as extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures as previously thought. These membrane extensions are associated with outer membrane vesicles, structures ubiquitous in Gram-negative bacteria, and are consistent with bacterial nanowires that mediate long-range EET by the previously proposed multistep redox hopping mechanism. Redox-functionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution. R eduction-oxidation (redox) reactions and electron transport are essential to the energy conversion pathways of living cells (1). Respiratory organisms generate ATP molecules-life's universal energy currency-by harnessing the free energy of electron transport from electron donors (fuels) to electron acceptors (oxidants) through biological redox chains. In contrast to most eukaryotes, which are limited to relatively few carbon compounds as electron donors and oxygen as the predominant electron acceptor, prokaryotes have evolved into versatile energy scavengers. Microbes can wield an astounding number of metabolic pathways to extract energy from diverse organic and inorganic electron donors and acceptors, which has significant consequences for global biogeochemical cycles (2-4).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.