Cavitation bubbles do not persist between SWs. Thus, mature bubbles from one pulse do not interfere with the next pulse, even at 120 SW/min. However, cavitation nuclei carried by fine particles released from stones can persist between pulses. These nuclei have little effect on the compressive wave but seed cavitation under the influence of the tensile wave. Bubble growth draws energy from the negative-pressure phase of the SW, reducing its amplitude. This likely affects the dynamics of cavitation bubble clusters at the stone surface, reducing the effectiveness of bubble action in stone comminution.
Ultra-high-speed video microscopy and numerical modeling were used to assess the dynamics of microbubbles at the surface of urinary stones. Lipid-shell microbubbles designed to accumulate on stone surfaces were driven by bursts of ultrasound in the sub-MHz range with pressure amplitudes on the order of 1 MPa. Microbubbles were observed to undergo repeated cycles of expansion and violent collapse. At maximum expansion, the microbubbles' cross-section resembled an ellipse truncated by the stone. Approximating the bubble shape as an oblate spheroid, this study modeled the collapse by solving the multicomponent Euler equations with a two-dimensional-axisymmetric code with adaptive mesh refinement for fine resolution of the gas-liquid interface. Modeled bubble collapse and high-speed video microscopy showed a distinctive circumferential pinching during the collapse. In the numerical model, this pinching was associated with bidirectional microjetting normal to the rigid surface and toroidal collapse of the bubble. Modeled pressure spikes had amplitudes two-to-three orders of magnitude greater than that of the driving wave. Micro-computed tomography was used to study surface erosion and formation of microcracks from the action of microbubbles. This study suggests that engineered microbubbles enable stone-treatment modalities with driving pressures significantly lower than those required without the microbubbles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citationsβcitations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.