We present a model in which supersymmetry is dynamically broken at comparatively low energies. Previous efforts to construct simple models of this sort have been hampered by the presence of axions. The present model, which exploits an observation of Bagger, Poppitz and Randall to avoid this problem, is far simpler than previous constructions. Models of this kind do not suffer from the naturalness difficulties of conventional supergravity models, and make quite definite predictions for physics over a range of scales from 100's of GeV to 1000's of TeV. Thus "Renormalizable Visible Sector Models" are a viable alternative to more conventional approaches. Our approach also yields a viable example of hidden sector dynamical supersymmetry breaking. 8/94Recently, however, Bagger, Poppitz and Randall [3] have pointed out that the R axion
We report the construction of large new classes of models which break supersymmetry dynamically. We then turn to model building. Two of the principal obstacles to constructing simple models of dynamical supersymmetry breaking are the appearance of FayetIliopoulos D terms and di culties in generating a term for the Higgs elds. Among the new models are examples in which symmetries prevent the appearance of Fayet-Iliopoulos terms. A gauge singlet eld, that may play a role in explaining the hierarchy in quark and lepton parameters, can generate a suitable term. The result is a comparatively simple model, with a low energy structure similar to that of the MSSM, but with far fewer arbitrary parameters. We begin the study of the phenomenology of these models. 7/95
We study gravity in backgrounds that are smooth generalizations of the Randall-Sundrum model, with and without scalar fields. These generalizations include three-branes in higher dimensional spaces which are not necessarily Anti-de Sitter far from the branes, intersecting brane configurations and configurations involving negative tension branes. We show that under certain mild assumptions there is a universal equation for the gravitational fluctuations. We study both the graviton ground state and the continuum of Kaluza-Klein modes and we find that the four-dimensional gravitational mode is localized precisely when the effects of the continuum modes decouple at distances larger than the fundamental Planck scale. The decoupling is contingent only on the long-range behaviour of the metric from the brane and we find a universal form for the corrections to Newton's Law. We also comment on the possible contribution of resonant modes. Given this, we find general classes of metrics which maintain localized four-dimensional gravity. We find that three-brane metrics in five dimensions can arise from a single scalar field source, and we rederive the BPS type conditions without any a priori assumptions regarding the form of the scalar potential. We also show that a single scalar field cannot produce conformally-flat locally intersecting brane configurations or a p-brane in greater than (p + 2)-dimensions. * J. Robert Oppenheimer Fellow
We consider fermions on an extra dimensional interval. We find the boundary conditions at the ends of the interval that are consistent with the variational principle, and explain which ones arise in various physical circumstances. We apply these results to Higgsless models of electroweak symmetry breaking, where electroweak symmetry is not broken by a scalar vacuum expectation value, but rather by the boundary conditions of the gauge fields. We show that it is possible to find a set of boundary conditions for bulk fermions that would give a realistic fermion mass spectrum without the presence of a Higgs scalar, and present some sample fermion mass spectra for the standard model quarks and leptons as well as their resonances.
We study various modifications to the minimal models of gauge-mediated supersymmetry breaking. We argue that, under reasonable assumptions, the structure of the messenger sector is rather restricted. We investigate the effects of possible mixing between messenger and ordinary squark and slepton fields and, in particular, violation of universality. We show that acceptable values for the and B parameters can naturally arise from discrete, possibly horizontal, symmetries. We claim that in models where the supersymmetry-breaking parameters A and B vanish at the tree level, tan could be large without fine-tuning. We explain how the supersymmetric CP problem is solved in such models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.