We prove asymptotic formulas for the number of rational points of bounded height on certain equivariant compactifications of the affine plane.Résumé. -Nousétablissons un développement asymptotique du nombre de points rationnels de hauteur bornée sur certaines compactificationséquivariantes du plan affine.
Invent. Math. 95, 421 435 (1989) The formula on p. 432 describing the leading term of the asymptotic for rational points on the flag manifold of a split group, with the height function normalised by a Chevalley lattice, was misprinted. The correct formula is (((~, PPo))The misprinted formula had the subscripts '0' at Peo omitted. The resulting expression is syntactically correct, but gives a wrong result.
We establish asymptotic formulas for volumes of height balls in analytic varieties over local fields and in adelic points of algebraic varieties over number fields, relating the Mellin transforms of height functions to Igusa integrals and to global geometric invariants of the underlying variety. In the adelic setting, this involves the construction of general Tamagawa measures. Résumé. -Nous établissons un développement asymptotique du volume des boules de hauteur dans des variétés analytiques sur des corps locaux et sur les points adéliques de variétés algébriques sur des corps de nombres. Pour cela, nous relions les transformées de Mellin des fonctions hauteur à des intégrales de type Igusa et à des invariants géométriques globaux de la variété sous-jacente. Dans le cas adélique, nous construisons des mesures de Tamagawa dans un cadre général.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.