In the previous work (Ishige et al 2009 Meas. Sci. Technol. 20 084019), we presented a method of measuring the relative air-refractive-index fluctuation (Δnair) from the laser frequency shift with the measurement uncertainty of order 10−8 using a phase modulation homodyne interferometer (Basile et al 1991 Metrologia 28 455), which was supported by an ultralow thermal expansion material (ULTEM) and an external cavity laser diode (ECLD). In this paper, an improvement in the uncertainty of the Δnair measurement is presented. The improvement method is based on a Fabry–Perot cavity constructed on the ULTEM, which has a thermal expansion coefficient of 2 × 10−8 K−1 and an ECLD. The Pound–Drever–Hall method (Drever et al 1983 Appl. Phys. B 31 97) is also used to control the ECLD frequency to track the resonance of the cavity. Δnair can be derived from the ECLD frequency shift. The estimated measurement uncertainty of Δnair for a short time (∼150 s) in the experiment is of order 2.5 × 10−9 or less.
Air refractive index fluctuation (Δn(air)) is one of the largest uncertainty sources in precision interferometry systems that require a resolution of nanometer order or less. We introduce a method for the active suppression of Δn(air) inside a normal air-environment chamber using a Fabry-Perot cavity and a piezoelectric volume actuator. The temporal air refractive index (n(air)) at a local point is maintained constant with an expanded uncertainty of ~4.2 × 10(-9) (k = 2), a sufficiently low uncertainty for precise measurements unaffected by Δn(air) to be made inside a chamber.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.