One of the limiting factors of accuracy and resolution in laser interferometry is represented by noise properties of the laser powering the interferometer. Amplitude and especially frequency fluctuations of the laser source are crucial in precision distance measurement. Sufficiently high long-term frequency stability of the laser source must be achieved especially in applications in fundamental metrology. Furthermore, the short-term frequency variations are also important primarily for measurements done at high acquisition speeds. This contribution presents practical results of measurements of short-term amplitude and frequency noises of a set of laser sources commonly used in laser interferometry. The influence of the interferometer design and electrical parameters of the detection system are also discussed.