Thermal decomposition of (NH4)2[OsxPt1-xCl6] as single-source precursors for Os-Pt binary alloys has been investigated under ambient and high pressure up to 40 GPa. Thermal decomposition of mixed-metal (NH4)2[OsxPt1-xCl6] precursor in hydrogen atmosphere (reductive environment) under ambient pressure results in formation of β-trans-[Pt(NH3)2Cl2] and α-trans-[Pt(NH3)2Cl2] crystalline intermediates as well as single and twophase Os-Pt binary alloys. For the first time, direct thermal decomposition of coordination compound under pressure has been investigated. A formation of pure metallic alloys from single-source precursors under pressure has been shown. Miscibility between fccand hcpstructured alloys has been probed up to 50 GPa by in situ high-pressure X-ray diffraction. Miscibility gap between fccand hcp-structured alloys does not change its positions with pressure up to at least 50 GPa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.