This paper demonstrates that 18 μm deep surface understating with a tolerance of 4.5 μm and a roughness Ra=0.4 μm can be produced to the required accuracy by electrochemical die-sinking if configured appropriately.Theoretical analysis shows that the bottom profile error can be presented as a superposition of the errors of surface alignment (non-parallel bottom) and shape (non-flat bottom). In this case, the alignment error accounts for a greater part of the size tolerance (3 μm out of 4.5 μm). This is why the attainment of desired accuracy revolves around the development, analysis, and assessment of ways to reduce this error.
During the bending operation of the thin sheet materials by the punch with the near-to-zero radius the special technological operation should be carried out. It means that the metal sheet obtained a certain thinning value, which is usually done in the form of the channel-concentrator or groove by pre-drawing operation in a cold state. It follows to the pre-straining and strengthening of the material. The authors investigated the strain hardened sheet's area after roll forming process theoretically, and obtained the strain-stress distribution inside the sheet during the bending operation. It was found out that the increase of the prior deformation during pre-straining in the bend layer follows to the increase of the radial and tangential stresses and displacement of the neutral axis inside the blank during bending operation. As a result, the bending moment changes its values depends on the punch radius and strain hardening.
This paper considers some theoretical provisions on the impact ultrasonic mechanical vibrations have on the throughput of an electroerosive piercing of small-diameter holes. The approximate estimates confirm the hypothesis that the cumulative jets mechanism makes the greatest contribution to the intensification of a multiphase medium flow in the interelectrode gap. A model is proposed for a periodic localization of the cavitation region in the bottom part of the annular side gap. It allows explaining the occurrence of a multiphase medium flow during hole processing.
This article studies dry hobbing of external cylindrical wheels by worm wheel hobs and reasons why some gear manufactures use hobbing without cutting fluids. Cutting fluids reduce frictional wear, provides temperature cooling of the tool or workpiece and helps flush away the chips from the cutting zone. But uneven cooling and different cutting conditions on the engaging and disengaging sides of a gear mesh provoke intensive wear of the teeth of the worm wheel hob, thus decreasing the life of worm hobs and increasing both the consumption of cutting tools and expenses for them. In this context, it becomes rather difficult to achieve efficiency and stability for the hobbing process. In the recent times, the cost of coolant disposal has been raised; in some cases, it accounts for 15-20% in terms of shop costs. Research was carried out under the following experimental conditions: a hobbing machine equipped with an automation system of high efficiency and with basic units of high static and dynamic stiffness; a high-accuracy worm hob from powdered metal wear-resistant high-speed steel of grade Р6М5К5; a workholding device with an elastic bush, and various cutting modes. Recommendations are given on using the multi-cycle hob-shifting strategy rather than the strategy of single-cycle shifting; and advantages gained by this technique are observed. Best cutting conditions and precision attained by dry gear-hobbing are described.
This study investigates the possibility of electrochemical removal of the defective layer formed on the surface of the product after its electrical discharge machining. A set of experiments was conducted in different electrolytes based on aqueous and aqueous-organic solvents. The experiments were to trace the influence of such settings of electrochemical machining as current density, electrolyte pumping speed, electrolyte temperature, and an electrode gap upon both the dynamics of metal removal and surface quality. Morphology of the obtained surface was examined by an Olympus BX-51Microscope. The dynamics of removing material (stock) from the work piece was inspected. Appropriate adjustments were made to the machining parameters during the machining of 65G steels, and a preferred composition was selected for the working medium. A sufficient design for production tools was proposed. Pitting corrosion was discovered on the surface of the samples in all studied modes of electrolysis. It was observed that switching from aqueous electrolyte to aqueous-organic electrolyte gave lower material removal rate and longer machining time accordingly. At the same time, a reduction in surface roughness was visualized, together with smaller pits and lower density of their distribution. The obtained results may be applied in operation design for electrochemical machining of steels with relatively high carbon contents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.