Information security, reliability of data transfer are today an important component of the globalization of information technology. Therefore, the proposed work is devoted to highlighting the results of the design and development of a hacking-resistant algorithm to ensure the integrity of information transfer via digital technology and computer engineering. To solve such problems, cryptographic hashing functions are used. In particular, elements of deterministic Chaos were introduced into the developed cyclic hashing algorithm. The investigation analyzes in detail the strengths and weaknesses of known hashing algorithms. They are shown to have disadvantages. The main ones are a large number of matches (Hamming (x, y) and the presence of a weak avalanche effect, which lead to a significant decrease in the reliability of the algorithm for hacking. The designed hashing algorithm uses an iterative Merkley-Damgard structure, augmented by the input message to a length multiple of 512 bits. Processing in blocks of 128-bit uses cellular automata with mixed rules of 30, 105 and 90, 150 and takes into account the dependence of the generation of the initial vector on the incoming message. This allows half of the 10,000 pairs of arbitrary messages to have an inverse Hamming distance of 0 to 2. The proposed algorithm is four times slower than the well-known family of "secure hash algorithms." However, computation speed is not a critical requirement for a hash function. Decreasing the sensitivity to the avalanche effect allows the generation time to be approximately halved. Optimization of the algorithm, as well as its testing was carried out using new technologies of the Java programming language (version 15). Suggestions and recommendations for improving this approach to data hashing are given also
Background. In 2015, a generator for electrotherapy and stimulation oh human nerve centers was created, called “VEB-1”®. Preliminary observation of volunteers revealed a modulating effect of a four-day course of electrical stimulation on the parameters of electroencephalogram, metabolism, as well as gas-discharge visualization (GDV). In this message, we present the results of the approbation of the device on an expanded contingent of volunteers with the use of additional research methods and a new modification of the device. Material and research methods. The object of observation were employees of the sanatorium “Moldova”, patients with chronic cholecystitis: 19 women 30-62 y and 19 men 25-63 y. In the morning registered HRV (“CardioLab+HRV”, “KhAI-Medica”, Kharkiv, UA), EEG (“NeuroCom Standard”, “KhAI-Medica”, Kharkiv, UA), kirlianogram by the method of GDV (“GDV Chamber”, “Biotechprogress”, SPb, RF), electroconductivity of skin in three pairs of points of acupuncture (“Medissa”), electrokinetic index of buccal epithelium ("Biotest", Kharkiv State University), as well as some endocrine, immune and metabolic parameters. After the initial testing, an transcutaneous electrical stimulation session was performed with a “VEB-1”® or a “VEB-2” devices. The next morning after completing the four-day course, retesting was performed. Results. Electrical stimulation causes a sympathotonic shift in the sympatho-vagal balance and an increase in PSD of delta-rhythm generating neurons combined with a decrease in PSD of beta- and theta-rhythm generating neurons. This is accompanied by increase in phagocytosis and favorable changes in immune, biochemical and biophysical parameters as well as increase in testosterone level in men only. The integral effects on the constellation of registered body parameters of both device modifications do not differ significantly. Conclusion. The "VEB" device exerts an adaptogenic effect on the body through transcutaneous electrical stimulation of neurons.
Background. One of the symptoms of COVID-19 is the so-called "cytokine storm". Its pathogenesis is that the initial release by lymphocytes and macrophages of proinflammatory cytokines in the classical immune response to SARS-CoV-2 is significantly enhanced and maintained due to excessive adrenergic stimulation of the immune cells. The proinflammatory adrenergic mechanism of the "cytokine storm" can be offset by the activation of the anti-inflammatory cholinergic mechanism by non-invasive stimulation of the vagus nerve. In 2015, a generator for electrotherapy and stimulation oh human nerve centers was created, called “VEB-1”®. Preliminary observation of volunteers revealed a modulating effect of a four-day course of electrical stimulation on the parameters of electroencephalogram, metabolism, as well as gas-discharge visualization (GDV). We hypothesized that changes in EEG parameters may be accompanied by a vagotonic shift of the sympatho-vagus balance, favorable for calming the “cytokine storm”. The main purpose of this study was to find out. In addition, concomitant changes in EEG, immunity, GDV, etc. due to the use of the devices "VEB-1"® and recently designed "VEB-2" had to be detected. Material and research methods. The object of observation were 18 volunteers: 11 women 33-62 y and 7 men 29-62 y (Mean±SD: 51±12 y) without clinical diagnose but with dysfunction of neuro-endocrine-immune complex and metabolism. In the morning registered HRV (“CardioLab+HRV”, “KhAI-Medica”, Kharkiv, UA), EEG (“NeuroCom Standard”, “KhAI-Medica”, Kharkiv, UA), kirlianogram by the method of GDV (“GDV Chamber”, “Biotechprogress”, SPb, RF), electroconductivity of skin in three pairs of points of acupuncture (“Medissa”), electrokinetic index of buccal epithelium ("Biotest", Kharkiv State University), as well as some parameters of immunity and metabolism. After the initial testing, an electrical stimulation session was performed with a “VEB-1”® or a “VEB-2” devices. The next morning after completing the four-day course, retesting was performed. Results. The effects of electrical stimulation can be divided into the following networks. Regarding EEG, this is a leveling of right-hand lateralization and normalizing decrease in the increased of the amplitude of the θ-rhythm and its spectral power density (SPD) at the loci F3, F7, F8, T3, T4, T6, P3, O1 and O2; further increase of SPD of δ-rhythm in loci F3, F4, T6, P3 and O1 as well as further decrease of SPD F4-α; reversion of the increased level of entropy in loci Fp1, F4, C3 and P3 to the lowered level. Regarding HRV, it is a vagotonic shift of sympatho-vagus balance due to a decrease in elevated levels of sympathetic tone markers and an increase in decreased levels of vagus tone markers, but without normalization. Neurotropic effects are accompanied by favorable changes in a number of immune parameters and a tendency to decrease the level of C-Reactive Protein. Regarding GDV, it is almost complete normalization of the initially increased GDI Area in the frontal projection and third Chakra Energy; normalizing decrease in the initially increased Energy of second and seventh Chakras; normalizing right-hand shift of more or less pronounced left-sided Asymmetry of first and third Chakra. These effects should be clearly interpreted as physiologically beneficial. The effects on these parameters are almost equally pronounced in people of both sexes when using both devices. Conclusion. Vagotonic and immunotropic effects of our device give us a reason to offer it for further research on the leveling of “cytokine storm” in patients with COVID-19.
The modified surface layers of the Cd1-xMnxTe crystals were obtained by the laser recrystallization of the crystal surface with the use of millisecond and nanosecond ruby lasers. The determination and diagnostics of the layer structural state were performed by the study the electron channeling patterns in the SEM. The AFM studies showed that mechanically stable contact regions in the CdTe crystal – Cu film system can be formed, depending on the laser energy density and beam defocusing. On the base of the ellipsometric studies, it was found that while irradiating the Cd1-xMnxTe crystal surface, the refractive index of the oxide film on the modified surface changes depending on the laser beam energy density, which can be interpreted as the formation of the oxides of the different chemical composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.