The results of a numerical analysis of unsteady heat transfer in the "metal-mold-environment" system during continuous combined casting and extrusion of an aluminum alloy in an installation with a horizontal carousel mold are presented. The heat engineering zones characterized by different intensity of heat transfer between the melt and the surface of the mold have been determined. A quantitative assessment of the influence of the rate of heating of the crystallizer on the temperature-time characteristics during the period of the transient thermal process is given. It is shown that an increase in the productivity of the installation reduces the duration of the transient thermal process when starting the installation from a cold state until it reaches a stationary thermal regime. The dependence of the time at which the installation reaches the stationary thermal regime on the rotation speed of the crystallizer wheel has been obtained.
The results of a numerical analysis of unsteady heat transfer in the "metal-mold-environment" system during continuous combined casting and extrusion of an aluminum alloy in an installation with a horizontal carousel mold are presented. The heat engineering zones characterized by different intensity of heat transfer between the melt and the surface of the mold have been determined. A quantitative assessment of the influence of the rate of heating of the crystallizer on the temperature-time characteristics during the period of the transient thermal process is given. It is shown that an increase in the productivity of the installation reduces the duration of the transient thermal process when starting the installation from a cold state until it reaches a stationary thermal regime. The dependence of the time at which the installation reaches the stationary thermal regime on the rotation speed of the crystallizer wheel has been obtained.
In the 70s of the last century, Soviet scientists developed an aluminum alloy with 7% rare earth elements (REE), which at melt cooling speeds of up to 10 4 deg/s are dispersed into intermetallic phases, which significantly increase the heat resistance, corrosion resistance, and weldability of finished products for conductive material. To ensure melt cooling rates of up to 10 4 deg/s in those years, centrifugation of granules in water was used. To increase the efficiency of this redistribution, a pilot industrial line was used for continuous pellet pressing by the Conform method. A method has been developed for producing small-section billets (AE 8-12 mm) with a crushed structure from Al-REM system alloys by continuous casting in electromagnetic crystallizer (EMC) mounted at Magnetic Hydrodynamics Scientific and Production Center LLC. In this method of casting, a dispersed structure is obtained with a slight intra-dendritic segregation, which guarantees a high level of mechanical properties. A series of experiments was carried out on continuous pressing at the Conform installation of a batch of AE 12 mm rod and drawing it to AE 0.5 mm wire without annealing. To predict the properties of the wire that meet the requirements of TU 1-809-1038-2018, an experimental plan has been drawn up and implemented to determine the dependence of mechanical properties on the exposure time (τ) and the annealing temperature (t) of the wire. As a result of processing the experimental data, regression equations were obtained and graphs of the dependence temporary tensile strength (σв) and relative elongation (δ) on the temperature and holding time, which can be used when annealing AE 0.5 mm wire from 01417 alloy to obtain the required mechanical properties. Citation: Gorokhov Yu.V., Timofeev V.N., Pervukhin M.V., Belokopytov V.I., Motkov M.M., Erdineev N.B., Kosyachenko I.S., Yakunina O.Ya., Strigin A.S. Manufacturing technology of aluminium wire from alloy 01417 with adjusted level of mechanical properties,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.