This paper presents a 50 dB high-gain operational amplifier (OPAMP) ,which is fabricated by unipolar n-type indium-zinc-oxide (IZO) thin-film transistors (TFTs). Different positive feedback technologies are employed to achieve sufficient voltage gain. The fabricated OPAMP exhibits an open-loop voltage gain (Av) of 50 dB over a -3 dB bandwidth of 15 kHz at the supply voltage of 20 V. The measured unity-gain frequency (fUG) and the DC power consumption are 500 kHz and 8.07 mW, respectively. In addition, an effective frequency compensation scheme is also introduced and simulated. The simulation results that the proposed OPAMP has a voltage gain of 50 dB with 60° phase margin at 150 kHz unity-gain frequency after compensation.
Background:
The development of high-performance piezoelectric pressure sensors with outstanding sensitivity, good linearity, flexibility, durability, and biocompatibility is of great significance for smart robotics, human healthcare devices, smart sensors, and electronic skin. Thus, considerable progress has been achieved in enhancing the piezoelectric property of PVDF-TrFE-based composite pressure sensors by adding various ZnO nanostructures in PVDF-TrFE polymer acting as a nucleating agent and dielectric material. In this work, flexible pressure sensors with a sandwich structure based on PVDF-TrFE/nano-ZnO composite sensing film were fabricated using a simple spin-coating method and post-annealing process, while electrospinning and high-voltage polarization processes were not adopted.
Methods:
Poly (vinylidene fluoride-trifluoroethylene) (PVDF-TrFE)/nano-ZnO composite films were prepared via spin coating to fabricate flexible piezoelectric pressure sensors. ZnO nanoparticles (ZnO NPs), tetrapod ZnO (T-ZnO) and ZnO nanorods (ZnO NRs) were used as nano-fillers for piezoelectric PVDF-TrFE, to enhance the beta-crystal ratio as well as the crystallinity of PVDF-TrFE. The structural and surface morphologies of the composite films were investigated using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM).
Results:
Among three different types of ZnO nanostructures with a concentration range (0-7.5 wt%), the sensor with 0.75 wt% ZnO NRs nanofiller exhibits a maximum output voltage of 1.73 V under an external pressure of 3 N and a maximum sensitivity of 586.3 mV/N at the range of 0-3 N. Further, the sensor can generate a clear piezoelectric voltage under bending and twisting deformation as well as compression and tensile deformation.
Conclusion:
To summarize, the addition of different concentrations of nano-ZnO can remarkably improve the piezoelectric performance of the composite sensor, and ZnO NRs can achieve better piezoelectric properties of the sensor as compared to ZnO NPs and T-ZnO. In addition, the sensor with 0.75 wt% ZnO NRs as nanofiller has the highest piezoelectric response, which is about 2.4 times that of the pure PVDF-TrFE sensor. It is demonstrated that the sensor has great potential applications in wearable health monitoring systems and mechanical stress measurement electronics.
Flexible piezoelectric tactile sensor with transverse planar electrodes based on hydrothermally grown ZnO nanorods (ZnO NRs) was presented by using polydimethylsiloxane (PDMS) as flexible substrate and packaging material. The effects of the content of gold nanoparticles (AuNPs) added into the precursor solution on the structural morphology of ZnO NRs and on the piezoelectric properties of the ZnO NRs tactile sensor were investigated. Tactile sensors show a linear piezoelectric response in the pressure range of 0-1 N, and the sensor for the precursor solution with AuNPs of 100 μL shows a high sensitivity of 1.42 V/N due to the large aspect ratio of the ZnO NRs, indicating that a small amount of AuNPs addition can optimize the structural morphology of ZnO NRs and thus improve the piezoelectric response of the sensor. Meanwhile, the sensor is employed to monitor human information in real-time such as bending/stretching motion of finger and distinguish various objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.