Solvent evaporation plays a critical role in nanofiber formation in electrospinning. Here, we present a nonlinear mass diffusion-transfer model describing the drying process in dilute polymer solution jets. The model is used to predict transient solvent concentration profiles in polyacrylonitrile/N,N-dimethylformamide (PAN/DMF) jets with the initial radii ranging from 50 μm down to 100 nm. Numerical simulations demonstrate high transient inhomogeneity of solvent concentration over the jet cross-section in microscopic jets. The degree of inhomogeneity decreases for finer, submicron jets. The simulated jet drying time decreases rapidly with the decreasing initial jet radius, from seconds for microjets to single milliseconds for nanojets. The results demonstrate the need for further improved coupled multiphysics models of electrospinning jets.
Endarterectomy and polytetrafluoroethylene patching produce considerable abnormalities in the hemodynamics of the repaired carotid. Advanced mechanical modeling can be used to evaluate different carotid revascularization approaches to obtain optimized biomechanical and hemodynamic results for the care of patients with carotid bifurcation disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.