Arthrosis is the most common joint disease in adults worldwide. Its incidence increases with age. In this study, the effectiveness of complex treatment was studied in 50 patients with an established diagnosis of stage I - III knee osteoarthrosis. All patients are non-steroidal anti-inflammatory drugs. Running along a pulsed magnetic field in the area of the affected joint. The obtained clinical effects indicate the advisability of including magnetotherapy procedures in the treatment complex.
Introduction. When using personal protective equipment for respiratory organs of an insulating type in case of depletion of a regenerative cartridge, hypoxic-hypercapnic changes in the gas composition of the body occur, which have a negative effect on the tolerance of personal protective equipment for respiratory organs. The combination of additional respiratory resistance with hypoxia and hypercapnia further worsens the tolerance of respiratory protective equipment. The purpose of this study was to study the tolerance of personal respiratory protection when changing the gas composition of the alveolar air. Material and methods. The study was conducted on healthy subjects of both sexes (78 people), aged 20 to 36 years. To simulate the conditions for the use of personal respiratory protective equipment, inspiratory resistive respiratory loads of 20% of the maximum intraoral pressure were used during the Mueller test. The tolerance of respiratory protective equipment was evaluated using the Borg visual analog scale of dyspnea, which reflected the level of subjective discomfort occurring due to additional respiratory resistance is turned on. The methodology for changing the gas composition of the alveolar air in the subjects consisted of using a system that allowed adding oxygen from the line to the closed spirograph circuit and turning the carbon dioxide adsorber on and off. Results. The tolerance of personal respiratory protection is associated with the nature of the gas composition of the alveolar air. A minimum of subjective discomfort was observed in the presence of hyperoxic-hypocapnic composition of the pulmonary air; on the contrary, an increase in subjective discomfort on the Borg scale was observed with a reduced oxygen content and an increased concentration of carbon dioxide. The use of personal respiratory protective equipment against the background of hypoxia-hypercapnia negatively changes the functional state of the body: there was observed an increase in physiological expenditures by leading effectors. Normalization of the gas composition of the body under the use of personal respiratory protection did not lead to complete optimization of the functional state of the subjects. Conclusion. Hypoxia and hypercapnia arising from the depletion of regenerative cartridges of the respiratory protective equipment of an insulating type leads to a significant deterioration in the tolerance to additional respiratory resistance. The alleged mechanism of this phenomenon should be considered as an increase in fatigue of the respiratory muscles.
Acute and chronic cutaneous wounds caused by traumas, surgical interventions and a range of chronic diseases such as, for example, diabetes mellitus or chronic venous insufficiency, are widely distributed among the population all over the world, first of all among the aged patients. The treatment of acute and chronic cutaneous wounds is a current challenge for the medicine, which is not completely solved for the present day. Medicines with regenerative activity used currently have certain disadvantages, of which can be mentioned particularly the difficulties in technology and standardization of the drugs of biological origin. A range of zinc compounds (e.g., oxide, sulfate etc.) are used for a long time for the treatment of various skin diseases. Nevertheless for the present time there are some important aspects of the biological activity of zinc coordination compounds which are still not studied in detail enough, particularly the regenerative activity. In this study we investigated the regenerative activity of zinc salicylate. Zinc salicylate was prepared by reaction of an excess of zinc carbonate with salicylic acid in ethanol. Zinc salicylate activity in vitro on metabolic, proliferative and migration state of fibroblasts was investigated in cell culture. It was shown that zinc salicylate stimulates metabolic activity, increases migration state of fibroblasts, contribute to proteins adaptation to damage. Wound healing action of zinc salicylate as an active principal of a polyethyleneglycol-based ointment was studied on the model of linear wound in rats. It was shown high regenerative activity of zinc salicylate vs a standard medicine (“Levomecol”).
AIM: This study aimed to explore the pathophysiological mechanisms of resistive breathing by using a model of a conditioned respiratory reflex to external resistance to breathing. MATERIALS AND METHODS: Inspiratory resistive loads were used 11, 28, 54, and 78 cmAq/l/s to model a conditioned respiratory reflex. External respiration was parametrized on the basis of the analysis of motor and ventilatory outputs. Conditioned signals were pure sounds exceeding the threshold of perception by 10 db at 2000 Hz frequency. All the test persons were divided into two groups (large and small groups) according to the initial reinforcement value. (1) In the large group (37 individuals), the conditioned reflex was formed from 11 cmAq/l/s that was subsequently increased stepwise in the load to 76 cmAq/l/s. (2) In the small group (18 individuals), the initial reinforcements were different gradations of resistive loads, with a stepwise transition to the other parameters of an unconditioned stimulus. The period of the isolated application of a conditioned signal (CS) was 20 s, the interval between signals was not fixed, varying from 2 min to 4 min. Six to eight combinations of the conditioned and unconditioned stimuli were used for 1 day of the experiment. RESULTS: The increase in the added respiratory resistance was associated with the pronounced reduction of pulmonary and alveolar ventilation, that is, with the hypoventilation type of resistive load realization. Changes in ventilation during the isolated application of a conditioned signal had an alternative character. In particular, as the reinforcement factor increased, a pronounced shift to hyperventilation was noted. CONCLUSION: The reinforcement value of the conditioned reflex changed stepwise, thereby significantly restructuring the proportion between the effectiveness of the adaptive activity in the realization of external resistance to inspiration (the time of stay under a certain load) and its physiological cost (totalities of the deviations of physiological and energy parameters).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.