Volatile compounds with an aldehyde moiety such as (Z)-9-octadecenal are potential ligands for cluster of differentiation 36 (CD36), a transmembrane receptor that has recently been shown to play a role in mammalian olfaction. In this study, by performing an assay using a peptide mimic of human CD36, we aimed to discover additional ligands for the receptor from volatiles containing a single aldehyde group commonly found in human foods. Straight-chain, saturated aliphatic aldehydes with 9-16 carbons exhibited CD36 ligand activities, albeit to varying degrees. Notably, the activities of tridecanal and tetradecanal were higher than that of oleic acid, the most potent ligand among the fatty acids tested. Among the aldehydes other than aliphatic aldehydes, only phenylacetaldehyde showed a weak activity. These findings make a contribution to our knowledge of recognition mechanisms for flavor volatiles in foods with an aldehyde group.
Class B scavenger receptors, scavenger receptor B1 (SR-B1) and cluster of differentiation 36 (CD36), are broadly expressed cell-surface proteins and are believed to serve as multifaceted players in lipid and lipoprotein metabolism in mammals. Because of its ability to recognise distinct odour-active volatile compounds and its presence in murine olfactory epithelium, CD36 has recently emerged as a participant in the detection of odorants within the nasal cavity. However, there have been no attempts to assess whether SR-B1 has such a role. In this study, we performed a cell-free in-vitro assay utilising a peptide mimic of the receptor, and demonstrated that SR-B1 could recognise aliphatic aldehydes (e.g., tetradecanal), a distinct class of volatile odorants, as potential ligands. By reverse transcription-polymerase chain reaction and western immunoblot analyses, we detected the expression of SR-B1 mRNA and protein, respectively, in mouse olfactory tissue. Finally, we immunohistochemically mapped the distribution of SR-B1 in the surface layer of olfactory epithelium in vivo, which is the first line of odorant detection. These findings uncover a novel role for SR-B1 as a contributor to the capture of specific odorants in the nasal cavity of mammals.Class B scavenger receptors are cell-surface proteins, characterised by two predicted transmembrane spans, broad expression patterns and the ability to recognise diverse ligands (13). Of these, scavenger receptor B1 (SR-B1) was initially identified as comprising 509 amino-acid residues (5). An earlier study has showed that SR-B1 is expressed in several tissues including the liver and adipose tissues, and can serve as a receptor for low-density lipoprotein (LDL), acetylated LDL, oxidised LDL (oxLDL) and maleylated bovine serum albumin (BSA) (2). Later, SR-B1 was found to recognise several other substances such as high-density lipoprotein (HDL) (1) and anionic phospholipids (15). These findings suggested that SR-B1 primarily participates in lipid and lipoprotein metabolism in internal organs (36). As studied extensively, it functions as a physiologically relevant HDL receptor to mediate the selective delivery of HDL-cholesterol (i.e., HDL-cholesteryl ester) to the liver and steroidogenic tissues (1,13,20). Another member of class B scavenger receptors, cluster of differentiation 36 (CD36), which comprises 472 amino-acid residues, is also a multifaceted and multifunctional player in lipid and lipoprotein metabolism (13,27,28). CD36 is known to share with SR-B1 the ability to recognise distinct ligands,
Class B scavenger receptor family members, scavenger receptor B1 (SR-B1) and cluster of differentiation 36 (CD36), are broadly expressed cell-surface proteins, both of which are believed to serve as multifaceted players in lipid and lipoprotein metabolism in mammals. Because of its presence in the apical part of taste receptor cells within circumvallate taste buds and its ability to recognise long-chain fatty acids, CD36 has been believed to participate in the sensing of the lipid species within the oral cavity. However, there have been no attempts to address whether SR-B1 has such a role to date. In this study, by reverse transcription-polymerase chain reaction analysis, we detected SR-B1 mRNA in a total RNA sample isolated from the circumvallate papillae of mouse tongue. Immunohistochemical analysis of tongue sections from the animals revealed the expression of SR-B1 protein in a population of taste bud cells of circumvallate papillae. In addition, the pattern of staining in the papillae for SR-B1 agreed closely with that for CD36 in double immunostaining analysis. We performed a cell-free in-vitro assay utilising a peptide mimic of SR-B1 and provided evidence that the receptor could recognise certain of the unsaturated long-chain fatty acids such as oleic acid. Our present findings suggest an additional role for SR-B1 as a captor of specific fatty acids in the oral cavity of mammals and contribute to expanding our knowledge of the physiological function of the receptor.
The cluster of differentiation 36 (CD36) is a transmembrane receptor expressed in various cells and has diverse lipid ligands. The expression of CD36 in the murine olfactory epithelium and its ability to recognize certain species of fatty aldehydes, a class of odor-active volatile compounds, have suggested a role for this receptor in the capture of specific odorants in the nasal cavity of mammals. However, the spectrum of CD36-recognizable volatile compounds is poorly understood. In this study, we employed our recently devised assay with fluorescently-labeled peptides as probes (fluorescence intensity assay) and identified distinct fatty acetates as volatile compounds that bind specifically to amino acid region 149–168 of CD36 (e.g., dodecyl and tetradecyl acetates). The present findings demonstrate the utility of our assay for the discovery of novel CD36 ligands and support the notion that the receptor functions as a captor of volatile compounds in the mammalian olfactory system.
Cluster of differentiation 36 (CD36) is a cell-surface receptor that recognizes diverse substances. We have presented indirect evidence that a short segment of the receptor comprising amino acids 149-168 contains a site for binding of its lipid ligands (e.g., distinct fatty acids and aldehydes). However, experimental support for their direct interactions is yet to be achieved. For this, we devised a fluorescence intensity assay, where a synthetic peptide consisting of CD36 amino acids 149-168 labeled with fluorescein isothiocyanate (FITC-CD36 149-168 ) and its variant peptides were used as positive and negative probes, respectively. First, we obtained results indicating that 1-palmitoyl-2-(5-keto-6-octenedioyl)phosphatidylcholine (an established CD36 ligand) but not 1-palmitoyl-2-arachidonyl-phosphatidylcholine (a non-ligand of the receptor) bound in a saturable and specific manner to FITC-CD36 149-168 . Strikingly, the assay allowed us to provide the first evidence supporting direct and specific binding between the CD36 segment and fatty aldehydes (e.g., Z-11-hexadecenal). However, this method failed to illustrate specific interactions of the segment with fatty acids, such as oleic acid. Nonetheless, our findings offer further insight into the biologically relevant ligands and the role of CD36. In addition, we suggest that this fluorescence-based technique provides a convenient means to evaluate protein (peptide)-lipid interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.