PurposeThe fracture mechanism of S-07 steel was investigated by observing the fracture surface of the specimens with scanning electron microscope (SEM). Furthermore, the overall elastic–plastic behaviors and the stress state evolution during the loading procedure of all specimens were simulated by FE analysis to obtain the local strain at crack nucleated location and the average triaxiality of each type of specimen.Design/methodology/approachThree types of tests under various stress states were performed to study the ductile fracture characteristics of S-07 high strength steel in quasi-static condition.FindingsUnder tensile and torsion loading conditions, S-07 steel exhibits two distinctive rupture mechanisms: the growth and internal necking of voids governs the rupture mechanism in tension dominated loading mode, while the change of void shape and internal shearing in the ligaments between voids dominants for shear conditions.Originality/valueThe failure criterion for S-07 steel considering the influence of the triaxial stress state was established.
The load-carrying capacities of welded joints need to be paid attention to in the design of the frame, which transfers the thrust generated by the rocket engine to the rocket body. A load-carrying capacity evaluation method of welded joints based on the structural stress method is proposed in this study. Both the ultimate load-carrying capacity and fracture section angle are precisely obtained by the evaluation method. At the same time, a definition of weld-failure stress is given based on the evaluation method and tests. The load-carrying capacity of welded joints in the rocket engine frame is analyzed through the finite element model, including the overall structure and local weld details. The weld-failure stress of welded joints is obtained based on the analysis of three types of welded structures—standard shear specimen, U-shaped fillet welded specimen and pipe-plate fillet welded specimen. The safety factors of the transverse rod and longitudinal bearing rod welded joints of the frame are 8.6 and 13.4, respectively.
PurposeRegeneratively cooled thrust chamber is a key component of reusable liquid rocket engines. Subjected to cyclic thermal-mechanical loadings, its failure can seriously affect the service life of engines. QCr0.8 copper alloy is widely used in thrust chamber walls due to its excellent thermal conductivity, and its mechanical and fatigue properties are essential for the evaluation of thrust chamber life. This paper contributes to the understanding of the damage mechanism and material selection of regeneratively cooled thrust chambers for reusable liquid rocket engines.Design/methodology/approachIn this paper, tensile and low-cycle fatigue (LCF) tests were conducted for QCr0.8 alloy, and a Chaboche combined hardening model was established to describe the elastic-plastic behavior of QCr0.8 at different temperatures and strain levels. In addition, an LCF life prediction model was established based on the Manson–Coffin formula. The reliability and accuracy of models were then verified by simulations in ABAQUS. Finally, the service life was evaluated for a regenerative cooling thrust chamber, under the condition of cyclic startup and shutdown.FindingsIn this paper, a Chaboche combined hardening model was established to describe the elastoplastic behavior of QCr0.8 alloy at different temperatures and strain levels through LCF experiments. The parameters of the fitted Chaboche model were simulated in ABAQUS, and the simulation results were compared with the experimental results. The results show that the model has high reliability and accuracy in characterizing the viscoplastic behavior of QCr0.8 alloy.Originality/value(1)The parameters of a Chaboche combined hardening constitutive model and LCF life equation were optimized by tensile and strain-controlled fatigue tests of QCr0.8 copper alloy. (2) Based on the Manson–Coffin formula, the reliability and accuracy of constitutive model were then verified by simulations in ABAQUS. (3)Thermal-mechanical analysis was carried out for regeneratively cooled thrust chamber wall of a reusable liquid rocket engine, and the service life considering LCF, creep and ratcheting damage was analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.