This study investigated the performance of three selected approaches to estimating a two-phase mixture model, where the first phase was a two-class latent class analysis model and the second phase was a linear growth model with four time points. The three evaluated methods were (a) one-step approach, (b) three-step approach, and (c) case-weight approach. As a result, some important results were demonstrated. First, the case-weight and three-step approaches demonstrated higher convergence rate than the one-step approach. Second, it was revealed that case-weight and three-step approaches generally did better in correct model selection than the one-step approach. Third, it was revealed that parameters were similarly recovered well by all three approaches for the larger class. However, parameter recovery for the smaller class differed between the three approaches. For example, the case-weight approach produced constantly lower empirical standard errors. However, the estimated standard errors were substantially underestimated by the case-weight and three-step approaches when class separation was low. Also, bias was substantially higher for the case-weight approach than the other two approaches.
Oral reading fluency (ORF), used by teachers and school districts across the country to screen and progress monitor at-risk readers, has been documented as a good indicator of reading comprehension and overall reading competence. In traditional ORF administration, students are given one minute to read a grade-level passage, after which the assessor calculates the words correct per minute (WCPM) fluency score by subtracting the number of incorrectly read words from the total number of words read aloud. As part of a larger effort to develop an improved ORF assessment system, this study expands on and demonstrates the performance of a new model-based estimate of WCPM based on a recently developed latent-variable psychometric model of speed and accuracy for ORF data. The proposed method was applied to a data set collected from 58 fourth-grade students who read four passages (a total of 260 words). The proposed model-based WCPM scores were also evaluated through a simulation study with respect to sample size and number of passages read.
Abstract:Missing data is a common problem in datasets that are obtained by administration of educational and psychological tests. It is widely known that existence of missing observations in data can lead to serious problems such as biased parameter estimates and inflation of standard errors. Most of the missing data imputation methods are focused on datasets containing continuous variables. However, it is very common to work with datasets that are made of dichotomous responses of individuals to a set of test items to which IRT models are fitted. This study compared the performances of missing data imputation methods that are IRT model-based imputation (MBI), Expectation-Maximization (EM), Multiple Imputation (MI), and Regression Imputation (RI). Parameter recoveries were evaluated by repetitive analyses that were conducted on samples that were drawn from an empirical large-scale dataset. Results showed that MBI outperformed other imputation methods in recovering item difficulty and mean of the ability parameters, especially with higher sample sizes. However, MI produced the best results in recovery of item discrimination parameters. ARTICLE HISTORY
Propensity score analysis, such as propensity score matching and propensity score weighting, is becoming increasingly popular in educational research. When a propensity score analysis is conducted, examining the covariate balance is considered to be crucial to justify the quality of the analysis results. However, it has been pointed out that solely considering how covariates balance after matching may not be enough for justifying the quality of the propensity score analysis results. Suitable covariate balance may still yield biased estimates of treatment effects. The current study aimed to systematically demonstrate this problem by a series of simulation studies. As a result, it was revealed that a good covariate balance on the mean and/or the variance does not guarantee reduced bias on an estimated treatment effect. It was also found that estimation of the treatment effect can be unbiased to some degree, even with a lack of balance under specific conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.