Serum Lp-PLA(2) and hsCRP levels may play an important role in the association between periodontal disease and hyperlipidemia, and the control of these mediators may affect the inflammatory control of patients with hyperlipidemia and periodontal disease.
Abnormalities in the production and/or release of relaxing factors from the endothelium have been implicated in the development of hypertension in several animal models. Endothelium-dependent relaxation has been reported to be impaired in thoracic aorta in experimentally induced and genetically hypertensive rats. Present study has extented these observations to thoracic aorta of cadmium-hypertensive rats. The possible role of alterations in oxidant status was also studied. Hypertension was induced by the intraperitoneal administration of 1 mg/kg/day cadmium for 15 days. Mechanical responses produced by acetylcholine (ACh, 10(-9)-10(-4) M) and sodium nitroprusside (SNP, 10(-10)-10(-5) M) were studied on phenylephrine-precontracted thoracic aorta rings from control and cadmium-hypertensive rats. Serum nitric oxide (NO) and aortic malondialdehyde (MDA) levels were measured. ACh-induced relaxation was attenuated in aorta from cadmium-hypertensive rats, whereas relaxation responses to SNP did not differ significantly between the groups. Exposure of aortic rings to N(G)-nitro-L-arginine methyl ester (L-NAME, 10(-4) M) resulted in a significantly greater inhibition of relaxation response to ACh in aortic rings of cadmium-hypertensive rats as compared with control rats. Incubation with L-arginine (L-Arg, 10(-3) M) caused a similar reversal of the inhibition of ACh-induced relaxation by L-NAME in both groups. Serum NO levels were decreased and aortic MDA levels were increased in cadmium-treated rats as compared with control rats. However, the differences between the groups did not reach a statistical significance. These findings suggested that the reduction in endothelium-dependent relaxation may play a role in cadmium-induced hypertension as it was in many other hypertension models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.