Fiber Bragg grating (FBG) based sensors have recently been introduced to the field of magnetic resonance imaging (MRI). Real-time MRI applications demand highly amplitude and phase sensitive MRI compatible sensors. Thus, a model and detailed analysis of FBG based ultrasound detection are required for designing better performing sensors. A hybrid FBG model incorporating numerical and FEA methods was developed and used for sensitivity and linearity analysis. The transfer matrix method was used for the modeling of optical modulation whereas FEA was used for pressure field calculations within the grating. The model was verified through reflection spectrum and acoustic pressure sensitivity testing of two π-phase shifted FBGs in a side slope read-out configuration. The sensitivity curves with respect to the operation point on the side slope was characterized in terms of amplitude and phase, and nonlinearity of the phase response has been quantified. Lastly, the impact of phase linearity of the FBG based acousto-optic sensor was tested under MRI when the sensor was used as a position marker and an analog phase shifter based solution was demonstrated.
This work aims to demonstrate the use of an "active" acousto-optic marker with enhanced visibility and reduced radiofrequency (RF)-induced heating for interventional MRI. Methods: The acousto-optic marker was fabricated using bulk piezoelectric crystal and π-phase shifted fiber Bragg grating (FBGs) and coupled to a distal receiver coil on an 8F catheter. The received MR signal is transmitted over an optical fiber to mitigate RF-induced heating. A photodetector converts the optical signal into electrical signal, which is used as the input signal to the MRI receiver plug. Acousto-optic markers were characterized in phantom studies. RF-induced heating risk was evaluated according to ASTM 2182 standard. In vivo real-time tracking capability was tested in an animal model under a 0.55T scanner. Results: Signal-to-noise ratio (SNR) levels suitable for real-time tracking were obtained by using high sensitivity FBG and piezoelectric transducer with resonance matched to Larmor frequency. Single and multiple marker coils integrated to 8F catheters were readout for position and orientation tracking by a single acousto-optic sensor. RF-induced heating was significantly reduced compared to a coax cable connected reference marker. Real-time distal tip tracking of an active device was demonstrated in an animal model with a standard real-time cardiac MR sequence. Conclusion: Acousto-optic markers provide sufficient SNR with a simple structure for real-time device tracking. RF-induced heating is significantly reduced compared to conventional active markers. Also, multiple RF receiver coils connected on an acousto-optic modulator can be used on a single catheter for determining catheter orientation and shape.
A fiber-optic electric field sensor utilizing an FBG based acousto-optic modulator is introduced. Sensitivity of 246 nV/V/m with minimum detectable magnetic field strength of 2.7V/m/Hz and dynamic range of 117dB/٧Hz are demonstrated at 23MHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.