The frontal and parietal eye fields serve as functional landmarks of the primate brain, although their correspondences between humans and macaque monkeys remain unclear. We conducted fMRI at 4.7 T in monkeys performing visually-guided saccade tasks and compared brain activations with those in humans using identical paradigms. Among multiple parietal activations, the dorsal lateral intraparietal area in monkeys and an area in the posterior superior parietal lobule in humans exhibited the highest selectivity to saccade directions. In the frontal cortex, the selectivity was highest at the junction of the precentral and superior frontal sulci in humans and in the frontal eye field (FEF) in monkeys. BOLD activation peaks were also found in premotor areas (BA6) in monkeys, which suggests that the apparent discrepancy in location between putative human FEF (BA6, suggested by imaging studies) and monkey FEF (BA8, identified by microstimulation studies) partly arose from methodological differences.
Coherent spontaneous blood oxygen level-dependent (BOLD) fluctuations have been intensely investigated as a measure of functional connectivity (FC) in the primate neocortex. BOLD-FC is commonly assumed to be constrained by the underlying anatomical connectivity (AC); however, cortical area pairs with no direct AC can also have strong BOLD-FC. On the mechanism generating FC in the absence of direct AC, there are 2 possibilities: 1) FC is determined by signal flows via short connection patterns, such as serial relays and common afferents mediated by a third area; 2) FC is shaped by collective effects governed by network properties of the cortex. In this study, we conducted functional magnetic resonance imaging in anesthetized macaque monkeys and found that BOLD-FC between unconnected areas depends less on serial relays through a third area than on common afferents and, unexpectedly, common efferents, which does not match the first possibility. By utilizing a computational model for interareal BOLD-FC network, we show that the empirically detected AC-FC relationships reflect the configuration of network building blocks (motifs) in the cortical anatomical network, which supports the second possibility. Our findings indicate that FC is not determined solely by interareal short connection patterns but instead is substantially influenced by the network-level cortical architecture.
We know how confidently we know: Metacognitive self-monitoring of memory states, so-called "metamemory," enables strategic and efficient information collection based on past experiences. However, it is unknown how metamemory is implemented in the brain. We explored causal neural mechanism of metamemory in macaque monkeys performing metacognitive confidence judgments on memory. By whole-brain searches via functional magnetic resonance imaging, we discovered a neural correlate of metamemory for temporally remote events in prefrontal area 9 (or 9/46d), along with that for recent events within area 6. Reversible inactivation of each of these identified loci induced doubly dissociated selective impairments in metacognitive judgment performance on remote or recent memory, without impairing recognition performance itself. The findings reveal that parallel metamemory streams supervise recognition networks for remote and recent memory, without contributing to recognition itself.
Correlated spontaneous activity in the resting brain is increasingly recognized as a useful index for inferring underlying functional-anatomic architecture. However, despite efforts for comparison with anatomical connectivity, neuronal origin of intrinsic functional connectivity (inFC) remains unclear. Conceptually, the source of inFC could be decomposed into causal components that reflect the efficacy of synaptic interactions and other components mediated by collective network dynamics (e.g., synchronization). To dissociate these components, it is useful to introduce another connectivity measure such as effective connectivity, which is a quantitative measure of causal interactions. Here, we present a direct comparison of inFC against emEC (effective connectivity probed with electrical microstimulation [EM]) in the somatosensory system of macaque monkeys. Simultaneous EM and functional magnetic resonance imaging revealed strong emEC in several brain regions in a manner consistent with the anatomy of somatosensory system. Direct comparison of inFC and emEC revealed colocalization and overall positive correlation within the stimulated hemisphere. Interestingly, we found characteristic differences between inFC and emEC in their interhemispheric patterns. Our results suggest that intrahemispheric inFC reflects the efficacy of causal interactions, whereas interhemispheric inFC may arise from interactions akin to network-level synchronization that is not captured by emEC.
Human fMRI studies revealed involvement of the posterior parietal cortex (PPC) during memory retrieval. However, corresponding memory-related regions in macaque PPC have not been established. In this monkey fMRI study, comparisons of cortical activity during correct recognition of previously seen items and rejection of unseen items revealed two major PPC activation sites that were differentially characterized by a serial probe recognition paradigm: area PG/PGOp in inferior parietal lobule, along with the hippocampus, was more active for initial item retrieval, while area PEa/DIP in intraparietal sulcus was for the last item. Effective connectivity analyses revealed that connectivity from hippocampus to PG/PGOp, but not to PEa/DIP, increased during initial item retrieval. The two parietal areas with differential serial probe recognition profiles were embedded in two different subnetworks of the brain-wide retrieval-related regions. These functional dissociations in the macaque PPC imply the functional correspondence of retrieval-related PPC networks in macaques and humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.