Progressive familial intrahepatic cholestasis (PFIC), a rare inherited disorder, progresses to liver failure in childhood. We have shown that sodium 4-phenylbutyrate (NaPB), a drug approved for urea cycle disorders (UCDs), has beneficial effects in PFIC. However, there is little evidence to determine an optimal regimen for NaPB therapy. Herein, a multicenter, open-label, single-dose study was performed to investigate the influence of meal timing on the pharmacokinetics of NaPB. NaPB (150 mg/kg) was administered orally 30 min before, just before, and just after breakfast following overnight fasting. Seven pediatric PFIC patients were enrolled and six completed the study. Compared with postprandial administration, an approved regimen for UCDs, preprandial administration significantly increased the peak plasma concentration and area under the plasma concentration-time curve of 4-phenylbutyrate by 2.5-fold (95% confidential interval (CI), 2.0–3.0;P = 0.003) and 2.4-fold (95% CI, 1.7–3.2;P = 0.005). The observational study over 3 years in two PFIC patients showed that preprandial, but not prandial or postprandial, oral treatment with 500 mg/kg/day NaPB improved liver function tests and clinical symptoms and suppressed the fibrosis progression. No adverse events were observed. Preprandial oral administration of NaPB was needed to maximize its potency in PFIC patients.
Adenosine triphosphatase phospholipid transporting 8B1 (ATP8B1) deficiency, an ultrarare autosomal recessive liver disease, includes severe and mild clinical forms, referred to as progressive familial intrahepatic cholestasis type 1 (PFIC1) and benign recurrent intrahepatic cholestasis type 1 (BRIC1), respectively. There is currently no practical method for determining PFIC1 or BRIC1 at an early disease course phase. Herein, we assessed the feasibility of developing a diagnostic method for PFIC1 and BRIC1. A nationwide Japanese survey conducted since 2015 identified 25 patients with cholestasis with ATP8B1 mutations, 15 of whom agreed to participate in the study. Patients were divided for analysis into PFIC1 (n = 10) or BRIC1 (n = 5) based on their disease course. An in vitro mutagenesis assay to evaluate pathogenicity of ATP8B1 mutations suggested that residual ATP8B1 function in the patients could be used to identify clinical course. To assess their ATP8B1 function more simply, human peripheral blood monocytederived macrophages (HMDMs) were prepared from each patient and elicited into a subset of alternatively activated macrophages (M2c) by interleukin-10 (IL-10). This was based on our previous finding that ATP8B1 contributes to polarization of HMDMs into M2c. Flow cytometric analysis showed that expression of M2c-related surface markers cluster of differentiation (CD)14 and CD163 were 2.3-fold and 2.1-fold lower (95% confidence interval, 2.0-2.5 for CD14 and 1.7-2.4 for CD163), respectively, in patients with IL-10-treated HMDMs from PFIC1 compared with BRIC1. Conclusion: CD14 and CD163 expression levels in IL-10-treated HMDMs may facilitate diagnosis of PFIC1 or BRIC1 in patients with ATP8B1 deficiency. (Hepatology Communications 2020;0:1-11). F amilial cholestatic liver disease comprises a variety of clinically and genetically heterogeneous disorders. Mutations in adenosine triphosphatase phospholipid transporting 8B1 (ATP8B1), adenosine triphosphate binding cassette subfamily B member 11 (ABCB11), tight junction Abbreviations: ATP8B1, adenosine triphosphatase phospholipid transporting 8B1; BRIC, benign recurrent intrahepatic cholestasis; CD, cluster of differentiation; CDC50A, heterodimer complex with transmembrane protein 30A; GGT, gamma-glutamyltransferase; HA, hemagglutinin antigen; HMDM, human peripheral blood monocyte-derived macrophage; HPBMo, human peripheral blood monocytes; IL-10, interleukin-10; M2c, subset of alternatively activated macrophages; MFI, mean fluorescence intensity; NBD-PC, nitrobenzoxadiazole-labeled phosphatidylcholine; PFIC, progressive familial intrahepatic cholestasis; WT, wild type.
The bile salt export pump (BSEP) plays an important role in biliary secretion. Mutations in ABCB11, the gene encoding BSEP, induce progressive familial intrahepatic cholestasis type 2 (PFIC2), which presents with severe jaundice and liver dysfunction. A less severe phenotype, called benign recurrent intrahepatic cholestasis type 2, is also known. About 200 missense mutations in ABCB11 have been reported. However, the phenotype-genotype correlation has not been clarified. Furthermore, the frequencies of ABCB11 mutations differ between Asian and European populations. We report a patient with PFIC2 carrying a homozygous ABCB11 mutation c.386G>A (p.C129Y) that is most frequently reported in Japan. The pathogenicity of BSEP has not been investigated. In this study, we performed the molecular analysis of this ABCB11 mutation using cells expressing BSEP. We found that trafficking of BSEP to the plasma membrane was impaired and that the expression of BSEP on the cell surface was significantly lower than that in the control. The amount of bile acids transported via BSEP was also significantly lower than that via BSEP. The transport activity of BSEP may be conserved because the amount of membrane BSEP corresponded to the uptake of taurocholate into membrane vesicles. In conclusion, we demonstrated that c.386G>A (p.C129Y) in ABCB11 was a causative mutation correlating with the phenotype of patients with PFIC2, impairment of biliary excretion from hepatocytes, and the absence of canalicular BSEP expression in liver histological assessments. Mutational analysis in ABCB11 could facilitate the elucidation of the molecular mechanisms underlying the development of intrahepatic cholestasis.
Summary The bile salt export pump (BSEP) is responsible for the export of bile acid from hepatocytes. Impaired transcellular transport of bile acids in hepatocytes with mutations in BSEP causes cholestasis. Compensatory mechanisms to regulate the intracellular bile acid concentration in human hepatocytes with BSEP deficiency remain unclear. To define pathways that prevent cytotoxic accumulation of bile acid in hepatocytes, we developed a human induced pluripotent stem cell-based model of isogenic BSEP-deficient hepatocytes in a Transwell culture system. Induced hepatocytes (i-Heps) exhibited defects in the apical export of bile acids but maintained a low intracellular bile acid concentration by inducing basolateral export. Modeling the autoregulation of bile acids on hepatocytes, we found that BSEP-deficient i-Heps suppressed de novo bile acid synthesis using the FXR pathway via basolateral uptake and export without apical export. These observations inform the development of therapeutic targets to reduce the overall bile acid pool in patients with BSEP deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.