Neuropathic pain, a debilitating pain condition, is a common consequence of damage to the nervous system. Optimal treatment of neuropathic pain is a major clinical challenge because the underlying mechanisms remain unclear and currently available treatments are frequently ineffective. Emerging lines of evidence indicate that peripheral nerve injury converts resting spinal cord glia into reactive cells that are required for the development and maintenance of neuropathic pain. However, the mechanisms underlying reactive astrogliosis after nerve injury are largely unknown. In the present study, we investigated cell proliferation, a critical process in reactive astrogliosis, and determined the temporally restricted proliferation of dorsal horn astrocytes in rats with spinal nerve injury, a well-known model of neuropathic pain. We found that nerve injury-induced astrocyte proliferation requires the Janus kinase-signal transducers and activators of transcription 3 signalling pathway. Nerve injury induced a marked signal transducers and activators of transcription 3 nuclear translocation, a primary index of signal transducers and activators of transcription 3 activation, in dorsal horn astrocytes. Intrathecally administering inhibitors of Janus kinase-signal transducers and activators of transcription 3 signalling to rats with nerve injury reduced the number of proliferating dorsal horn astrocytes and produced a recovery from established tactile allodynia, a cardinal symptom of neuropathic pain that is characterized by pain hypersensitivity evoked by innocuous stimuli. Moreover, recovery from tactile allodynia was also produced by direct suppression of dividing astrocytes by intrathecal administration of the cell cycle inhibitor flavopiridol to nerve-injured rats. Together, these results imply that the Janus kinase-signal transducers and activators of transcription 3 signalling pathway are critical transducers of astrocyte proliferation and maintenance of tactile allodynia and may be a therapeutic target for neuropathic pain.
Chronic itch is an intractable symptom of inflammatory skin diseases, such as atopic and contact dermatitis. Recent studies have revealed neuronal pathways selective for itch, but the mechanisms by which itch turns into a pathological chronic state are poorly understood. Using mouse models of atopic and contact dermatitis, we demonstrate a long-term reactive state of astrocytes in the dorsal horn of the spinal segments that corresponds to lesioned, itchy skin. We found that reactive astrogliosis depended on the activation of signal transducer and activator of transcription 3 (STAT3). Conditional disruption of astrocytic STAT3 suppressed chronic itch, and pharmacological inhibition of spinal STAT3 ameliorated the fully developed chronic itch. Mice with atopic dermatitis exhibited an increase in scratching elicited by intrathecal administration of the itch-inducer gastrin-releasing peptide (GRP), and this enhancement was normalized by suppressing STAT3-mediated reactive astrogliosis. Moreover, we identified lipocalin-2 (LCN2) as an astrocytic STAT3-dependent upregulated factor that was crucial for chronic itch, and we demonstrated that intrathecal administration of LCN2 to normal mice increased spinal GRP-evoked scratching. Our findings indicate that STAT3-dependent reactive astrocytes act as critical amplifiers of itching through a mechanism involving the enhancement of spinal itch signals by LCN2, thereby providing a previously unrecognized target for treating chronic itch.
Activation of purinergic receptors in the spinal cord by extracellular ATP is essential for neuropathic hypersensitivity after peripheral nerve injury (PNI). However, the cell type responsible for releasing ATP within the spinal cord after PNI is unknown. Here we show that PNI increases expression of vesicular nucleotide transporter (VNUT) in the spinal cord. Extracellular ATP content ([ATP]e) within the spinal cord was increased after PNI, and this increase was suppressed by exocytotic inhibitors. Mice lacking VNUT did not show PNI-induced increase in [ATP]e and had attenuated hypersensitivity. These phenotypes were recapitulated in mice with specific deletion of VNUT in spinal dorsal horn (SDH) neurons, but not in mice lacking VNUT in primary sensory neurons, microglia or astrocytes. Conversely, ectopic VNUT expression in SDH neurons of VNUT-deficient mice restored PNI-induced increase in [ATP]e and pain. Thus, VNUT is necessary for exocytotic ATP release from SDH neurons which contributes to neuropathic pain.
Neuropathic pain is caused by peripheral nerve injury (PNI). One hallmark symptom is allodynia (pain caused by normally innocuous stimuli), but its mechanistic underpinning remains elusive. Notably, whether selective stimulation of non-nociceptive primary afferent Aβ fibers indeed evokes neuropathic pain-like sensory and emotional behaviors after PNI is unknown, because of the lack of tools to manipulate Aβ fiber function in awake, freely moving animals. In this study, we used a transgenic rat line that enables stimulation of non-nociceptive Aβ fibers by a light-activated channel (channelrhodopsin-2; ChR2). We found that illuminating light to the plantar skin of these rats with PNI elicited pain-like withdrawal behaviors that were resistant to morphine. Light illumination to the skin of PNI rats increased the number of spinal dorsal horn (SDH) Lamina I neurons positive to activity markers (c-Fos and phosphorylated extracellular signal-regulated protein kinase; pERK). Whole-cell recording revealed that optogenetic Aβ fiber stimulation after PNI caused excitation of Lamina I neurons, which were normally silent by this stimulation. Moreover, illuminating the hindpaw of PNI rats resulted in activation of central amygdaloid neurons and produced an aversion to illumination. Thus, these findings provide the first evidence that optogenetic activation of primary afferent Aβ fibers in PNI rats produces excitation of Lamina I neurons and neuropathic pain-like behaviors that were resistant to morphine treatment. This approach may provide a new path for investigating circuits and behaviors of Aβ fiber-mediated neuropathic allodynia with sensory and emotional aspects after PNI and for discovering novel drugs to treat neuropathic pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.