Virtual compound screening using molecular docking is widely used in the discovery of new lead compounds for drug design. However, this method is not completely reliable and therefore unsatisfactory. In this study, we used massive molecular dynamics simulations of protein-ligand conformations obtained by molecular docking in order to improve the enrichment performance of molecular docking. Our screening approach employed the molecular mechanics/Poisson-Boltzmann and surface area method to estimate the binding free energies. For the top-ranking 1,000 compounds obtained by docking to a target protein, approximately 6,000 molecular dynamics simulations were performed using multiple docking poses in about a week. As a result, the enrichment performance of the top 100 compounds by our approach was improved by 1.6–4.0 times that of the enrichment performance of molecular dockings. This result indicates that the application of molecular dynamics simulations to virtual screening for lead discovery is both effective and practical. However, further optimization of the computational protocols is required for screening various target proteins.
The authors examined the protective effects of adipose‐derived stem cells and adipose‐derived stem cell‐conditioned medium (ASC‐CM) against retinal damage and identified the neuroprotective factors in ASC‐CM. The findings suggest that ASC‐CM and progranulin have neuroprotective effects in the light‐induced retinal‐damage model. Progranulin may be a potential target for the treatment of the degenerative diseases of the retina.
Progranulin (PGRN) is a secreted growth factor associated with embryo development, tissue repair, and inflammation. In a previous study, we showed that adipose-derived stem cell-conditioned medium (ASC-CM) is rich in PGRN. In the present study, we investigated whether PGRN is associated with retinal regeneration in the mammalian retina. We evaluated the effect of ASC-CM using the N-methyl-N-nitrosourea-induced retinal damage model in mice. ASC-CM promoted the differentiation of photoreceptor cells following retinal damage. PGRN increased the number of BrdU+ cells in the outer nuclear layer following retinal damage some of which were Rx (retinal precursor cell marker) positive. PGRN also increased the number of rhodopsin+ photoreceptor cells in primary retinal cell cultures. SU11274, a hepatocyte growth factor (HGF) receptor inhibitor, attenuated the increase. These findings suggest that PGRN may affect the differentiation of retinal precursor cells to photoreceptor cells through the HGF receptor signaling pathway.
Abstract. Dietary carotenoids exhibit various biological activities, including antioxidative activity. In particular, astaxanthin, a type of carotenoid, is well known as a powerful antioxidant. We investigated whether astaxanthin would protect against light-induced retinal damage. In an in vivo study, ddY male mice were exposed to white light at 8,000 lux for 3 h to induce retinal damage. Five days after light exposure, retinal damage was evaluated by measuring electroretinogram (ERG) amplitude and outer nuclear layer (ONL) thickness. Furthermore, expression of apoptotic cells, 8-hydroxy-deoxyguanosine (8-OHdG), was measured. In an in vitro study, retinal damage was induced by white light exposure at 2,500 lux for 24 h, and propidium iodide (PI)-positive cells was measured and intracellular reactive oxygen species (ROS) activity was examined. Astaxanthin at 100 mg/kg inhibited the retinal dysfunction in terms of ERG and ONL loss and reduced the expression of apoptotic and 8-OHdG-positive cells induced by light exposure. Furthermore, astaxanthin protected against increases of PI-positive cells and intracellular reactive oxygen species (ROS) activity in 661W cells. These findings suggest that astaxanthin has protective effects against light-induced retinal damage via the mechanism of its antioxidative effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.