The metazoan mitochondrial (mt) genome is typically a circular, double-stranded DNA molecule between 14 and 18 kb in size. This molecule encodes 37 genes: 13 protein genes, 2 ribosomal RNA genes, and 22 tRNA genes (Wolstenholme 1992). The order of these genes varies among metazoans (Boore 1999). The mt genomes of 14 insects have been completely sequenced. These include (1) seven flies (Diptera),
SUMMARYIn insects, the precise timing of molting and metamorphosis is strictly guided by a principal steroid hormone, ecdysone. Among the multiple conversion steps for synthesizing ecdysone from dietary cholesterol, the conversion of 7-dehydrocholesterol to 5-ketodiol, the so-called 'Black Box', is thought to be the important rate-limiting step. Although a number of genes essential for ecdysone synthesis have recently been revealed, much less is known about the genes that are crucial for functioning in the Black Box. Here we report on a novel ecdysteroidgenic gene, non-molting glossy (nm-g)/shroud (sro), which encodes a short-chain dehydrogenase/reductase. This gene was first isolated by positional cloning of the nm-g mutant of the silkworm Bombyx mori, which exhibits a low ecdysteroid titer and consequently causes a larval arrest phenotype. In the fruit fly, Drosophila melanogaster, the closest gene to nm-g is encoded by the sro locus, one of the Halloween mutant members that are characterized by embryonic ecdysone deficiency. The lethality of the sro mutant is rescued by the overexpression of either sro or nm-g genes, indicating that these two genes are orthologous. Both the nm-g and the sro genes are predominantly expressed in tissues producing ecdysone, such as the prothoracic glands and the ovaries. Furthermore, the phenotypes caused by the loss of function of these genes are restored by the application of ecdysteroids and their precursor 5-ketodiol, but not by cholesterol or 7-dehydrocholesterol. Altogether, we conclude that the Nm-g/Sro family protein is an essential enzyme for ecdysteroidogenesis working in the Black Box.
Many larval color mutants have been obtained in the silkworm Bombyx mori. Mapping of melaninsynthesis genes on the Bombyx linkage map revealed that yellow and ebony genes were located near the chocolate (ch) and sooty (so) loci, respectively. In the ch mutants, body color of neonate larvae and the body markings of elder instar larvae are reddish brown instead of normal black. Mutations at the so locus produce smoky larvae and black pupae. F 2 linkage analyses showed that sequence polymorphisms of yellow and ebony genes perfectly cosegregated with the ch and so mutant phenotypes, respectively. Both yellow and ebony were expressed in the epidermis during the molting period when cuticular pigmentation occurred. The spatial expression pattern of yellow transcripts coincided with the larval black markings. In the ch mutants, nonsense mutations of the yellow gene were detected, whereas large deletions of the ebony ORF were detected in the so mutants. These results indicate that yellow and ebony are the responsible genes for the ch and so loci, respectively. Our findings suggest that Yellow promotes melanization, whereas Ebony inhibits melanization in Lepidoptera and that melanin-synthesis enzymes play a critical role in the lepidopteran larval color pattern.
Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several “moltinism” mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval–larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval–pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH–deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis.
Mechanisms for the uptake and transport of carotenoids, essential nutrients for humans, are not well understood in any animal system. The Y (Yellow blood) gene, a critical cocoon color determinant in the silkworm Bombyx mori, controls the uptake of carotenoids into the intestinal mucosa and the silk gland. Here we provide evidence that the Y gene corresponds to the intracellular carotenoid-binding protein (CBP) gene. In the Y recessive strain, the absence of an exon, likely due to an incorrect mRNA splicing caused by a transposon-associated genomic deletion, generates a nonfunctional CBP mRNA, resulting in colorless hemolymph and white cocoons. Enhancement of carotenoid uptake and coloration of the white cocoon was achieved by germ-line transformation with the CBP gene. This study demonstrates the existence of a genetically facilitated intracellular process beyond passive diffusion for carotenoid uptake in the animal phyla, and paves the way for modulating silk color and lipid content through genetic engineering.carotenoid transport ͉ cocoon color ͉ transgenic silkworm
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.