Pelvic exenteration and sacral resection for primary or recurrent rectal cancer are tolerable procedures with a low mortality rate. Although they provide a survival benefit if curative resection is possible, the associated morbidity remains high and should be followed up closely.
Resection for locally recurrent rectal cancer is potentially curative in patients with localized or sacral invasive patterns of recurrence. Alternatives should be explored in patients with recurrence involving the lateral pelvic wall.
Human epidermoid KB cell lines resistant to high levels of adriamycin, C-A90, C-A120, C-A500, and C-A1000, were isolated in selection medium containing increasing concentrations of adriamycin, 1 microgram/ml of cepharanthine, a multidrug-resistance (MDR) reversing agent, and 100 nM of mezerein, a protein kinase C activating agent. One of the adriamycin-resistant KB cell lines, C-A500, was cross-resistant to drugs that typify the classical multidrug resistance phenotype, such as vincristine, actinomycin D, VP-16, and colchicine. The accumulation of adriamycin and vincristine was decreased in C-A500 cells and the efflux of adriamycin from C-A500 was enhanced compared with parental KB-3-1 cells. These adriamycin-resistant KB cells did not contain detectable levels of P-glycoprotein or overexpress MDR1. Multidrug-resistance-associated protein (MRP) and MRP mRNA were expressed in the adriamycin-resistant KB cells, C-A120, C-A500, and C-A1000, but not in parental KB-3-1 and revertant C-AR cells. The MRP gene was amplified in all the MDR cells that overexpressed MRP mRNA. DNA topoisomerase II levels were markedly decreased in C-A500 and C-A1000 cells but only slightly decreased in C-A120 cells. These results indicate that MRP overexpressed in the resistant cells may be responsible for the reduced accumulation of adriamycin and vincristine and that both the increased expression of MRP and decreased levels of topoisomerase II underlie the drug resistance in C-A120, C-A500, and C-A1000 cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.