A novel column is described that does not require frits to keep packing material within a capillary. A continuous bed is prepared in situ in aqueous solution by radical copolymerization of N-isopropylacrylamide and 2-acrylamido-2-methylpropanesulfonic acid (the resultant gel is denoted poly(AMPS-co-IPAAm). N,N'-Methylenebisacrylamide is used for cross-linking. On the application of an electrical field, electroosmotic flow (EOF) is developed in the bed along the capillary, where fluid propulsion would be otherwise difficult to achieve. The resultant EOF transports neutral compounds through the column without forcing the gel out of the capillary. Examination of the fluid motion in the continuous bed using a video microscope system and an image processor shows a relatively flat flow profile of EOF. The bed functions as the stationary phase for reversed-phase capillary electrochromatography (CEC). This new approach is an alternative to packed capillary columns which have been used previously in CEC. A high efficiency is obtained for a steroid which is separated on a 4.0% total monomer concentration (T), 10.0% degree of cross-linking (C), and 10.0% mole fraction of AMPS in the total monomer (S), poly(AMPS-co-IPAAm) column. A mixture of polyaromatic hydrocarbons is separated on a 6.9% T, 5.8% C, and 5.5% S poly(AMPS-co-IPAAm) column. The capacity factor of benzo[a]pyrene increases from 0.63 to 1.91 as the acetonitrile content in a Tris-boric acid buffer is decreased from 45 to 30% (v/v). The run-to-run RSD of analyte migration time is less than 0.73%, and the day-to-day RSD is acceptable. Potential benefits of this approach are also mentioned.
A substance that exhibited a tryptophan-like fluorescence peak at 354 nm on excitation at 295 nm at neutral pH was isolated from human urine. This compound was determined by visible-light absorption spectroscopy, fluorescence spectroscopy, 1H and 13C NMR spectroscopies, and FAB-MS to be 1-(1',2',3',4',5'-pentahydroxypentyl)-1,2,3,4-tetrahydro-2-carboli ne-3- carboxylic acid. This compound, named tetrahydropentoxyline, is a new type of hydrophilic tetrahydro-beta-carboline, and its elution position was between those of 4-pyridoxic acid and kynurenic acid on C18 reversed-phase HPLC. The amount of tetrahydropentoxyline excreted in the urine of normal subjects [n = 21; age, 45 (SD 20) years] was about 5.2 (SD 1.0) mg per day.
Among the several mechanisms proposed for ischemic preconditioning (IPC), generation of reactive oxygen species (ROS) is reported to be involved in the cardioprotective effects of IPC. The present study was designed to investigate whether repetitive exposure to hydrogen peroxide (H(2)O(2)) can protect the myocardium against subsequent ischemia/reperfusion injury, and whether the H(2)O(2)-induced cardioprotection is related to the preservation of energy metabolism. Langendorff-perfused rat hearts were exposed to two, 5 min episodes of IPC or to various concentrations of H(2)O(2) twice and then to 35 min global ischemia and 40 min reperfusion. Using (31)P nuclear magnetic resonance ((31)P-NMR) spectroscopy, cardiac phosphocreatine (PCr) and ATP and intracellular pH (pH(i)) were monitored. IPC and the treatment with 2 micromol/L H(2)O(2) significantly improved the post-ischemic recovery of left ventricular developed pressure (LVDP) and the PCr and ATP compared with those of the control ischemia/reperfusion (LVDP: 36.9 +/-7.4% of baseline in control hearts, 84.0+/-3.5% in IPC, 65.4+/-3.8% in H(2)O(2); PCr: 51.1+/-5.3% in control hearts, 81.4+/-5.5% in IPC, 81.7+/-5.2% in H(2)O(2); ATP: 12.3+/-1.6% in control hearts; 30.0+/-2.8% in IPC, 28.6+/-2.3% in H(2)O(2), mean +/- SE, p<0.05). However, lower (0.5 micromol/L) or higher (10 micromol/L) concentration of H(2)O (2) had no effect. There were significant linear correlations between mean LVDP and high-energy metabolites after 40 min reperfusion in H(2)O(2)-treated hearts. In IPC-treated hearts, the mean LVDP was greater than that in the 2 micromol/L H(2)O(2)-treated hearts under similar levels of high-energy metabolites. IPC also ameliorated intracellular acidification (6.38+/-0.03 in control hearts, 6.65+/-0.04 in IPC, p<0.05), but treatment with H(2)O(2) did not affect pH(i) during ischemia (6.40+/-0.05 in H(2)O(2)). In conclusion, H(2)O(2) had protective effects against ischemia/reperfusion injury and the effects were related to the preservation of energy metabolism. IPC could have additional protective mechanisms that are associated with the amelioration of intracellular acidosis during ischemia.
In Burkholderia glumae (formerly named Pseudomonas glumae), isolated as the causal agent of grain rot and seedling rot of rice, oxalate was produced from oxaloacetate in the presence of short-chain acyl-CoA such as acetyl-CoA and propionyl-CoA. Upon purification, the enzyme responsible was separated into two fractions (tentatively named fractions II and III), both of which were required for the acyl-CoA-dependent production of oxalate. In conjugation with the oxalate production from oxaloacetate catalyzed by fractions II and III, acetyl-CoA used as the acyl-CoA substrate was consumed and equivalent amounts of CoASH and acetoacetate were formed. The isotope incorporation pattern indicated that the two carbon atoms of oxalate are both derived from oxaloacetate, and among the four carbon atoms of acetoacetate two are from oxaloacetate and two from acetyl-CoA. When the reaction was carried out with fraction II alone, a decrease in acetyl-CoA and an equivalent level of net utilization of oxaloacetate were observed without appreciable formation of CoASH, acetoacetate or oxalate. It appears that in the oxalate production from oxaloacetate and acetyl-CoA, fraction II catalyzes condensation of the two substrates to form an intermediate which is split into oxalate and acetoacetate by fraction III being accompanied by the release of CoASH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.