Salicylic acid (SA) is a plant immune signal produced upon pathogen challenge to induce systemic acquired resistance (SAR). It is the only major plant hormone for which the receptor has not been firmly identified. SAR in Arabidopsis requires the transcription cofactor NPR1 (nonexpresser of PR genes 1), whose degradation serves as a molecular switch for SAR. Here we show that NPR1 paralogues, NPR3 and NPR4, are SA receptors that bind SA with different affinities and function as adaptors of the Cullin 3 ubiquitin E3 ligase to mediate NPR1 degradation in an SA-regulated manner. Accordingly, the npr3 npr4 mutant accumulates higher levels of NPR1 and is insensitive to SAR induction. Moreover, this mutant is defective in pathogen effector-triggered programmed cell death and immunity. Our study reveals the mechanism of SA perception in determining cell death and survival in response to pathogen challenge.
Changes in redox status have been observed during immune responses in different organisms, but the associated signaling mechanisms are poorly understood. In plants, these redox changes regulate the conformation of NPR1, a master regulator of salicylic acid (SA)–mediated defense genes. NPR1 is sequestered in the cytoplasm as an oligomer through intermolecular disulfide bonds. We report that S-nitrosylation of NPR1 by S-nitrosoglutathione (GSNO) at cysteine-156 facilitates its oligomerization, which maintains protein homeostasis upon SA induction. Conversely, the SA-induced NPR1 oligomer-to-monomer reaction is catalyzed by thioredoxins (TRXs). Mutations in both NPR1 cysteine-156 and TRX compromised NPR1-mediated disease resistance. Thus, the regulation of NPR1 is through the opposing action of GSNO and TRX. These findings suggest a link between pathogen-triggered redox changes and gene regulation in plant immunity.
SUMMARY
Systemic acquired resistance (SAR) is a broad-spectrum plant immune response involving profound transcriptional changes that are regulated by the co-activator NPR1. Nuclear translocation of NPR1 is a critical regulatory step, but how it is regulated in the nucleus is unknown. Here, we show that turnover of nuclear NPR1 protein plays an important role in modulating its target gene transcription. In the absence of pathogen challenge, NPR1 is continuously cleared from the nucleus by the proteasome, which restricts its co-activator activity to prevent untimely activation of SAR. Surprisingly, inducers of SAR promote turnover of NPR1 by phosphorylation of residues Ser11/Ser15, thereby facilitating its recruitment to a Cullin3-based ubiquitin ligase. Genetic experiments showed that turnover of phosphorylated NPR1 is required for full induction of target genes and establishment of SAR. These in vivo data demonstrate unique dual roles for co-activator turnover in both preventing and stimulating gene transcription to regulate plant immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.