Controlling the morphology of the metal−organic framework (MOF) for nanosheets is beneficial for understanding their crystal growth kinetics and useful for extending these MOF nanosheets to advanced applications, in particular for gas separation and device integration. However, synthesizing MOF nanosheets with uniform thickness or desirable size still remains challenging. Herein, we provide a crystal dissolution−growth strategy for fabricating dispersible porphyrin MOF nanosheets with lateral dimensions and nanometer thickness. A morphological transition (bulk crystals−nanosheets−bulk crystals) in Zn-TCPP was observed when controlling the crystal growth kinetics by adjusting the reaction parameters (temperature and acidity). These findings encouraged the synthesis of other types of nanosheets (Cu-TCPP, Zn-TCPP (Pd), and Cu-BDC nanosheets). Zn-TCPP (Pd) nanosheets were applied in field-effect transistors and exhibited photoresponse characteristics. This work demonstrates a new strategy for obtaining MOF nanosheets and casts a new light upon fabricating two-dimensional inorganic−organic hybrid materials with controlled thickness.
Rapid and accurate detection of changes in glucose (Glu) and hydrogen peroxide (H2O2) concentrations is essential for the predictive diagnosis of diseases. Electrochemical biosensors exhibiting high sensitivity, reliable selectivity, and rapid response provide an advantageous and promising solution. A porous two-dimensional conductive metal–organic framework (cMOF), Ni-HHTP (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), was prepared by using a one-pot method. Subsequently, it was employed to construct enzyme-free paper-based electrochemical sensors by applying mass-producing screen-printing and inkjet-printing techniques. These sensors effectively determined Glu and H2O2 concentrations, achieving low limits of detection of 1.30 μM and 2.13 μM, and high sensitivities of 5573.21 μA μM−1 cm−2 and 179.85 μA μM−1 cm−2, respectively. More importantly, the Ni-HHTP-based electrochemical sensors showed an ability to analyze real biological samples by successfully distinguishing human serum from artificial sweat samples. This work provides a new perspective for the use of cMOFs in the field of enzyme-free electrochemical sensing, highlighting their potential for future applications in the design and development of new multifunctional and high-performance flexible electronic sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.