The formation of amyloid fibrils proceeds via a nucleation-dependent mechanism in which nucleation phase is generally associated with a high free energy resulting in the rate-limiting step. On the basis of this kinetic feature, the nucleation is one of the most crucial phases controlling the pathogenesis of amyloidoses, but little is known about the details of how protein molecules and surrounding environment vary at this stage. Here, we applied near infrared (NIR) spectral monitoring of water structural changes in real time during the nucleation-dependent fibrillation of insulin. Whilst multivariate spectral analysis in the 2050–2350 nm spectral region indicated cross-β formation, characteristic transformations of water structure have been detected in the spectral region 1300–1600 nm corresponding to the first overtone of water OH stretching vibrations. Furthermore, specific water spectral patterns (aquagrams) related to different water molecular conformations have been found along the course of protein nucleation and aggregation. Right in the beginning, dissociation of hydrogen-bonded network in bulk water and coinstantaneous protein and ion hydration were observed, followed by water hydrogen-bonded networks development, presumably forcing the nucleation. These specific transformations of water spectral pattern could be used further as a biomarker for early non-invasive diagnosis of amyloidoses prior to explosive amplification and deposits of amyloid fibrils.
This research investigates the potential of near infrared spectroscopy (NIRS) for the detection and quantification of pesticides in aqueous solution. Standard solutions of Alachlor and Atrazine (ranging in concentration from 1.25 -100 ppm) were prepared by dilution in a Methanol/water solvent (1:1 methanol/water (v/v)). Near infrared transmission spectra were obtained in the wavelength region 400 -2500 nm; however, the wavelength regions below 1300 nm and above 1900 nm were omitted in subsequent analysis due to the poor signal repeatability in these regions. Partial least squares analysis was applied for discrimination between pesticide and solvent and for prediction of pesticide concentration. Limits of detection of 12.6 ppm for Alachlor and 46.4 ppm for Atrazine were obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.